代码随想录 day44 动态规划part09 买卖股票IV 含冷冻期 含手续费

188.买卖股票的最佳时机IV

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:
输入:k = 2, prices = [2,4,1]
输出:2 解释:在第 1(股票价格 = 2) 的时候买入,在第 2(股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

示例 2:
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7 解释:在第 2(股票价格 = 2) 的时候买入,在第 3(股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5(股票价格 = 0) 的时候买入,在第 6(股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

0 <= k <= 100
0 <= prices.length <= 1000
0 <= prices[i] <= 1000

思路

121. 买卖股票的最佳时机
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0122.买卖股票的最佳时机II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。


123 问题
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

188.买卖股票的最佳时机IV
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

121 问题 只能买卖一次
122 问题 可以买卖多次
123 问题 至多可以买卖2188 问题 至多可以买卖k次


121  只能买卖一次
持有
dp[i][0] = max(dp[i-1][0], -prices[i])  只能持有一次: 昨天持有 or 今天买入
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])  昨天卖出 or 今天卖出

122 可以买卖多次
dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i])  只能持有一次: 昨天持有 or 今天买入(在昨天卖出的基础上,今天买入)
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])  昨天卖出 or 今天卖出

123 问题 至多可以买卖2次
不操作:
dp[i][0] = dp[i-1][0]
操作:
    第一次持有
    第一次不持有
    第二次持有
    第二次不持有

dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);


188 问题 至多可以买卖k次 --->123 问题的基础上 k 发生了变化。
第 i 天有 2*k+1 种状态
不操作 or 操作

不操作
dp[i][0] = dp[i-1][0]

操作
    第 1 次持有
    第 1 次不持有
    第 2 次持有
    第 2 次不持有
    第 3 次持有
    第 3 次不持有
    ......
    第 k-1 次持有
    第 k-1 次不持有
    第 k 次持有
    第 k 次不持有

dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);      # 1 次持有
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i])       # 1 次不持有
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);      # 2 次持有
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);      # 2 次不持有
......
dp[i][2*(k-1)-1] = max(dp[i - 1][2*(k-1)-1], dp[i - 1][2*(k-2)] - prices[i]);  # k-1 次持有
dp[i][2*(k-1)] = max(dp[i - 1][2*(k-1)], dp[2*(k-1)][1] + prices[i]);   # k-1 次不持有
dp[i][2*k-1] = max(dp[i - 1][2*k-1], dp[i - 1][2*(k-1)-1] - prices[i]);   # k 次持有
dp[i][2*k] = max(dp[i - 1][2*k], dp[i - 1][2*k-1] + prices[i]);     # k 次不持有

dp[i][0] = dp[i-1][0]
for j in range(1, k + 1):
    dp[i][2 * j - 1] = max(dp[i - 1][2 * j - 1], dp[i - 1][2 * j - 2] - prices[i])  # 第 i 天 第 j 次持有
    dp[i][2 * j] = max(dp[i - 1][2 * j], dp[i - 1][2 * j - 1] + prices[i])          # 第 i 天 第 j 次不持有

lens = len(prices)
dp = [[0] * (2*k+1)] * lens
初始化
for j in range(1, 2k + 1):
    dp[0][j] = -prices[0]   # 持有的初始化


code

class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        lens = len(prices)
        if lens <= 1: return 0
        dp = [[0] * (2*k + 1)] *lens
        for j in range(1, 2*k + 1, 2):
            dp[0][j] = -prices[0]
        for i in range(1, lens):
            dp[i][0] = dp[i-1][0]
            for j in range(1, k + 1):
                dp[i][2 * j - 1] = max(dp[i - 1][2 * j - 1], dp[i - 1][2 * j - 2] - prices[i])  # 第 i 天 第 j 次持有
                dp[i][2 * j] = max(dp[i - 1][2 * j], dp[i - 1][2 * j - 1] + prices[i])  # 第 i 天 第 j 次不持有
        return dp[-1][-1]

code1

class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [[0] * (2*k+1) for _ in range(len(prices))]
        for j in range(1, 2*k, 2):
            dp[0][j] = -prices[0]
        for i in range(1, len(prices)):
            for j in range(0, 2*k-1, 2):
                dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] - prices[i])
                dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i])
        return dp[-1][2*k]

from 代码随想录

这道题目可以说是动态规划:123.买卖股票的最佳时机III (opens new window)的进阶版,这里要求至多有k次交易。

动规五部曲,分析如下:
确定dp数组以及下标的含义
在动态规划:123.买卖股票的最佳时机III (opens new window)中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。
使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

0 表示不操作
1 第一次买入
2 第一次卖出
3 第二次买入
4 第二次卖出
.....
大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入。
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

所以二维dp数组的C++定义为:
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
确定递推公式
还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。

达到dp[i][1]状态,有两个具体操作:
操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:
操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {
    dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
    dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
本题和动态规划:123.买卖股票的最佳时机III (opens new window)最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。

dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;0天做第一次买入的操作,dp[0][1] = -prices[0];0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
第二次卖出初始化dp[0][4] = 0;
所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:
for (int j = 1; j < 2 * k; j += 2) {
    dp[0][j] = -prices[0];
}
在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。

确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

举例推导dp数组
以输入[1,2,3,4,5],k=2为例。

188.买卖股票的最佳时机IV

最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。
以上分析完毕,C++代码如下:

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {

        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }
        for (int i = 1;i < prices.size(); i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};
时间复杂度: O(n * k),其中 n 为 prices 的长度
空间复杂度: O(n * k)
当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。

但感觉三维数组操作起来有些麻烦,我是直接用二维数组来模拟三维数组的情况,代码看起来也清爽一些。

309.最佳买卖股票时机含冷冻期

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1)。
示例:

输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

思路

第 i 天的状态
持有, 不持有, 冷冻期
持有 0
dp[i][0]: 今天买入(卖出都昨天是冷冻期 + 买入),昨天持有
dp[i][1]: max(dp[i-1][2] - prices[i], dp[i-1][1])

不持有 1: 今天卖出(昨天买入 + 今天卖出) 今天保持昨天的状态
dp[i][1] = max(dp[i-1][0] + prices[i], dp[i-1][1])
冷冻期 2 : 昨天卖出
dp[i][2] = dp[i-1][1]

# 初始化
lens = len(prices)
if lens <= 1: return 0
dp [[0] * 3 for _ in range(lens)]
dp[0][0] = -prices[0]
dp[0][1] = 0
dp[0][2] = 0

遍历顺序 : 前到后
[1,2,3,0,2]
dp[0][0] = -1
dp[0][1] = 0
dp[0][2] = 0

dp[1][0] = 0-2, -1 = -1
dp[1][1] = 0, 2 - 1 = 1
dp[1][2] = 0

dp[2][0] = 0-3, -1 = -1
dp[2][1] = 1, 3 - 1 = 2
dp[2][2] = 1

dp[3][0] = 1-0, -1 = 1
dp[3][1] = 2, 0-1 = 2
dp[3][2] = dp[2][1] = 2

dp[4][0] = 2-2, 1 = 1
dp[4][1] = 2, 2+1 = 3
dp[4][2] = dp[3][1] = 2


更新思路

持有状态: 以前卖出(今天持有,则今天也可以是冻结期), 今天卖出------这里需要单独考虑
状态一:0 持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
不持有股票状态,这里就有两种卖出股票状态
状态二:1 保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
状态三:2 今天卖出股票
状态四:3 今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

状态一:持有股票状态
昨天持有 or 昨天保持卖出状态, 昨天冷冻期
dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i])

状态二:1 保持卖出股票的状态
昨天冷冻期,前天保持卖出的状态
dp[i][1] = max(dp[i-1][3], dp[i-1][1])

状态三:2 今天卖出股票
昨天持有, 今天卖出
dp[i][2] = dp[i-1][0] + prices[i]

状态四:3 今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
昨天卖出
dp[i][3] = dp[i-1][2]

还是有问题 从代码随想录学习

code

class Solution:
    def maxProfit(self, prices) -> int:
        lens = len(prices)
        if lens == 0: return 0
        dp = [[0] * 4] * lens    # 会报错
        dp[0][0] = -prices[0]
        for i in range(1,lens):
            dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i])    # 持有
            dp[i][1] = max(dp[i-1][1], dp[i-1][3])                # 保持卖出
            dp[i][2] = dp[i-1][0] + prices[i]                     # 卖出
            dp[i][3] = dp[i-1][2]                                 # 冻结
        return max(dp[lens-1][3], dp[lens-1][1], dp[lens-1][2])


代码报错

dp = [[0] * 4] * 2    # 会报错
dp = [[0, 0, 0, 0], [0, 0, 0, 0]]
dp[0][0] = -1

则dp会被复制为
[[-1, 0, 0, 0], [-1, 0, 0, 0]]
即其他的数值都按照第一个 [[0] * 4] 进行复制,会影响后续的dp[i][0]

所以 以后严格dp = [[0] * 4 for _ in range(lens)]
则dp[0][0] = -1
dp =  [[-1, 0, 0, 0], [0, 0, 0, 0]]  # 这个才是我们需要的初始化的格式

更新code

class Solution:
    def maxProfit(self, prices) -> int:
        lens = len(prices)
        if lens == 0: return 0
        dp = [[0] * 4] * for _ in range(lens)]   # 会报错
        dp[0][0] = -prices[0]
        for i in range(1,lens):
            dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i])    # 持有
            dp[i][1] = max(dp[i-1][1], dp[i-1][3])                # 保持卖出
            dp[i][2] = dp[i-1][0] + prices[i]                     # 卖出
            dp[i][3] = dp[i-1][2]                                 # 冻结
        return max(dp[lens-1][3], dp[lens-1][1], dp[lens-1][2])

code from

from typing import List

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        if n == 0:
            return 0
        dp = [[0] * 4 for _ in range(n)]  # 创建动态规划数组,4个状态分别表示持有股票、不持有股票且处于冷冻期、不持有股票且不处于冷冻期、不持有股票且当天卖出后处于冷冻期
        dp[0][0] = -prices[0]  # 初始状态:第一天持有股票的最大利润为买入股票的价格
        for i in range(1, n):
            dp[i][0] = max(dp[i-1][0], max(dp[i-1][3], dp[i-1][1]) - prices[i])  # 当前持有股票的最大利润等于前一天持有股票的最大利润或者前一天不持有股票且不处于冷冻期的最大利润减去当前股票的价格
            dp[i][1] = max(dp[i-1][1], dp[i-1][3])  # 当前不持有股票且处于冷冻期的最大利润等于前一天持有股票的最大利润加上当前股票的价格
            dp[i][2] = dp[i-1][0] + prices[i]  # 当前不持有股票且不处于冷冻期的最大利润等于前一天不持有股票的最大利润或者前一天处于冷冻期的最大利润
            dp[i][3] = dp[i-1][2]  # 当前不持有股票且当天卖出后处于冷冻期的最大利润等于前一天不持有股票且不处于冷冻期的最大利润
        return max(dp[n-1][3], dp[n-1][1], dp[n-1][2])  # 返回最后一天不持有股票的最大利润

309.最佳买卖股票时机含冷冻期

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1)。
示例:

输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

思路

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期

在动态规划:122.买卖股票的最佳时机II (opens new window)中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。

动规五部曲,分析如下:

确定dp数组以及下标的含义
dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。

其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。

具体可以区分出如下四个状态:

状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
不持有股票状态,这里就有两种卖出股票状态
状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
状态三:今天卖出股票
状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!


j的状态为:

0:状态一
1:状态二
2:状态三
3:状态四
很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。

从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。

如果大家按照代码随想录顺序来刷的话,会发现 买卖股票最佳时机 1234 的题目讲解中

动态规划:121.买卖股票的最佳时机
动态规划:122.买卖股票的最佳时机
动态规划:123.买卖股票的最佳时机
动态规划:188.买卖股票的最佳时机
「今天卖出股票」我是没有单独列出一个状态的归类为「不持有股票的状态」,而本题为什么要单独列出「今天卖出股票」 一个状态呢?
因为本题我们有冷冻期,而冷冻期的前一天,只能是 「今天卖出股票」状态,如果是 「不持有股票状态」那么就很模糊,因为不一定是 卖出股票的操作。
如果没有按照 代码随想录 顺序去刷的录友,可能看这里的讲解 会有点困惑,建议把代码随想录本篇之前股票内容的讲解都看一下,领会一下每天 状态的设置。
注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。

确定递推公式
达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
操作二:今天买入了,有两种情况
前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]
那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

操作一:前一天就是状态二
操作二:前一天是冷冻期(状态四)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:
昨天一定是持有股票状态(状态一),今天卖出
即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:昨天卖出了股票(状态三)
dp[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
dp数组如何初始化
这里主要讨论一下第0天如何初始化。

如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。

保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。

如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。

今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。

确定遍历顺序
从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

举例推导dp数组
以 [1,2,3,0,2] 为例,dp数组如下:

309.最佳买卖股票时机含冷冻期

最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。

714.买卖股票的最佳时机含手续费

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:
输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
输出: 8
解释: 能够达到的最大利润:

在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
注意:

0 < prices.length <= 50000.
0 < prices[i] < 50000.
0 <= fee < 50000.

思路

122 可以买卖多次
dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i])  只能持有一次: 昨天持有 or 今天买入(在昨天卖出的基础上,今天买入)
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])  昨天卖出 or 今天卖出

与122 的区别 : 714.含手续费, 每卖出一次都要交一次的手续费用

dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i])  只能持有一次: 昨天持有 or 今天买入(在昨天卖出的基础上,今天买入)
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - 2)  昨天卖出 or 今天卖出

code

class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        lens = len(prices)
        if lens <= 0:return 0
        dp = [[0] * 2 for _ in range(lens)]
        dp[0][0] = -prices[0]
        for i in range(1, lens):
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i])
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee)
        return max(dp[-1][0], dp[-1][1])

总结

Leetcode股票问题总结篇!
之前我们已经把力扣上股票系列的题目都讲过的,但没有来一篇股票总结,来帮大家高屋建瓴,所以总结篇这就来了!

股票问题总结

动态规划:121.买卖股票的最佳时机(opens new window)
动态规划:122.买卖股票的最佳时机II(opens new window)
动态规划:123.买卖股票的最佳时机III(opens new window)
动态规划:188.买卖股票的最佳时机IV(opens new window)
动态规划:309.最佳买卖股票时机含冷冻期(opens new window)
动态规划:714.买卖股票的最佳时机含手续费(opens new window)
#卖股票的最佳时机
动态规划:121.买卖股票的最佳时机 (opens new window),股票只能买卖一次,问最大利润。

【贪心解法】
取最左最小值,取最右最大值,那么得到的差值就是最大利润,代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int low = INT_MAX;
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            low = min(low, prices[i]);  // 取最左最小价格
            result = max(result, prices[i] - low); // 直接取最大区间利润
        }
        return result;
    }
};
【动态规划】
dp[i][0] 表示第i天持有股票所得现金。
dp[i][1] 表示第i天不持有股票所得现金。
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i] 所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0] 所以dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
代码如下:

// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if (len == 0) return 0;
        vector<vector<int>> dp(len, vector<int>(2));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }
        return dp[len - 1][1];
    }
};
时间复杂度:O(n)
空间复杂度:O(n)
使用滚动数组,代码如下:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
        }
        return dp[(len - 1) % 2][1];
    }
};
时间复杂度:O(n)
空间复杂度:O(1)
#买卖股票的最佳时机II
动态规划:122.买卖股票的最佳时机II (opens new window)可以多次买卖股票,问最大收益。

【贪心解法】
收集每天的正利润便可,代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 1; i < prices.size(); i++) {
            result += max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
};
时间复杂度:O(n)
空间复杂度:O(1)
【动态规划】

dp数组定义:

dp[i][0] 表示第i天持有股票所得现金
dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
注意这里和121. 买卖股票的最佳时机 (opens new window)唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况。

在121. 买卖股票的最佳时机 (opens new window)中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

代码如下:(注意代码中的注释,标记了和121.买卖股票的最佳时机唯一不同的地方)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(2, 0));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[len - 1][1];
    }
};
时间复杂度:O(n)
空间复杂度:O(n)
#买卖股票的最佳时机III
动态规划:123.买卖股票的最佳时机III (opens new window)最多买卖两次,问最大收益。

【动态规划】

一天一共就有五个状态,

没有操作
第一次买入
第一次卖出
第二次买入
第二次卖出
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

达到dp[i][1]状态,有两个具体操作:

操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:
操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

代码如下:
// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};
时间复杂度:O(n)
空间复杂度:O(n × 5)
当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<int> dp(5, 0);
        dp[1] = -prices[0];
        dp[3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[1] = max(dp[1], dp[0] - prices[i]);
            dp[2] = max(dp[2], dp[1] + prices[i]);
            dp[3] = max(dp[3], dp[2] - prices[i]);
            dp[4] = max(dp[4], dp[3] + prices[i]);
        }
        return dp[4];
    }
};
时间复杂度:O(n)
空间复杂度:O(1)
这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去! 对于本题,把版本一的写法研究明白,足以!

#买卖股票的最佳时机IV
动态规划:188.买卖股票的最佳时机IV (opens new window)最多买卖k笔交易,问最大收益。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

0 表示不操作
1 第一次买入
2 第一次卖出
3 第二次买入
4 第二次卖出
.....
除了0以外,偶数就是卖出,奇数就是买入。

确定递推公式
达到dp[i][1]状态,有两个具体操作:

操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {
    dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
    dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
整体代码如下:

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {

        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }
        for (int i = 1;i < prices.size(); i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};
当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。但感觉三维数组操作起来有些麻烦,直接用二维数组来模拟三维数组的情况,代码看起来也清爽一些。

#最佳买卖股票时机含冷冻期
动态规划:309.最佳买卖股票时机含冷冻期 (opens new window)可以多次买卖但每次卖出有冷冻期1天。

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期。

在动态规划:122.买卖股票的最佳时机II (opens new window)中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。本题则可以花费为四个状态

dp[i][j]:第i天状态为j,所剩的最多现金为dp[i][j]。

具体可以区分出如下四个状态:

状态一:买入股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
卖出股票状态,这里就有两种卖出股票状态
状态二:两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
状态三:今天卖出了股票
状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
操作二:今天买入了,有两种情况
前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
前一天是保持卖出股票状态(状态二),dp[i - 1][1] - prices[i]
所以操作二取最大值,即:max(dp[i - 1][3], dp[i - 1][1]) - prices[i]

那么dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

操作一:前一天就是状态二
操作二:前一天是冷冻期(状态四)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

操作一:昨天一定是买入股票状态(状态一),今天卖出
即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

操作一:昨天卖出了股票(状态三)
p[i][3] = dp[i - 1][2];

综上分析,递推代码如下:

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3]- prices[i], dp[i - 1][1]) - prices[i];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
整体代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        if (n == 0) return 0;
        vector<vector<int>> dp(n, vector<int>(4, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
            dp[i][2] = dp[i - 1][0] + prices[i];
            dp[i][3] = dp[i - 1][2];
        }
        return max(dp[n - 1][3],max(dp[n - 1][1], dp[n - 1][2]));
    }
};
时间复杂度:O(n)
空间复杂度:O(n)
#买卖股票的最佳时机含手续费
动态规划:714.买卖股票的最佳时机含手续费 (opens new window)可以多次买卖,但每次有手续费。

相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。

这里重申一下dp数组的含义:

dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee
所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

本题和动态规划:122.买卖股票的最佳时机II (opens new window)的区别就是这里需要多一个减去手续费的操作。

以上分析完毕,代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        return max(dp[n - 1][0], dp[n - 1][1]);
    }
};
时间复杂度:O(n)
空间复杂度:O(n)
#总结
至此,股票系列正式剧终,全部讲解完毕!

从买卖一次到买卖多次,从最多买卖两次到最多买卖k次,从冷冻期再到手续费,最后再来一个股票大总结,可以说对股票系列完美收官了。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值