代码随想录 day43 动态规划part08 买卖股票最佳时机 I II III

121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:
输入:[7,1,5,3,6,4]

输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:
输入:prices = [7,6,4,3,1]

输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0

思路

prices, prices[i],

# 最大获取利润的定义。
卖出股票后的收益, 在第j天有两种选择,卖股票和不买股票

卖股票: 证明的之前的某天i买入;
不买股票:那最高利润是没有买入股票, 等于前一天的收入,

dp[j] : 第j天的利润。 第i天买入, i < j, 第几天卖出, prices[j] - prices[i] + dp[j-i-1]
# j天的动作
1. j买入, 则在第至少第j-1天卖出, dp[j-1] - prices[j]
2. j卖出, 则在第i天买入: dp[j-i-1] +prices[j] - prices[i]
3. 不买入也不卖出: dp[j-1]

[7,1,5,3,6,4]

code 这个买卖了多次

class Solution:
    def maxProfit(self, prices) -> int:
        dp = [0] * (len(prices))

        for i in range(0, len(prices)):
            for j in range(len(prices) -1, i, -1):
                dp[j] = max(dp[j], dp[j - 1], dp[j - i - 1] + (prices[j] - prices[i]))

        return dp[-1]

反思–本题只能买卖一次。所以在第 i 天买入, 未来第j天卖出就算完成。

dp[j] = 在 0-i天的某一天买入,在第第j天卖出的收益为dp[j]
1. 当天卖出
prices[j] - prices[1], prices[j] - prices[2], prices[j] - prices[3],prices[4] - prices[5],prices[6] - prices[7]
2. 当天买入 max(- prices[j], 0)
3. 在前一天已经完成交易
dp[j] = max(dp[j -1], dp[j], nums[j] - nums[i])

dp = [0] * len(prices)
dp[0] = 0

for i in range(len(prices)):
    for j in range( i + 1, len(prices)):
        dp[p] = max(dp[j-1], dp[j], nums[j] - nums[i])

code

class Solution:
    def maxProfit(self, prices) -> int:
        dp = [0] * (len(prices))

        for i in range(len(prices)):
            for j in range(i + 1, len(prices)):
                dp[j] = max(dp[j - 1], dp[j], prices[j] - prices[i])

        return dp[-1]

prices = [7,1,5,3,6,4]
# prices =[2,1,4,5,2,9,7]
上面这个代码超时了, 是否可以优化
保留前 1~i-1的最小值 --- 贪心的思想
class Solution:
    def maxProfit(self, prices) -> int:
        dp = [0] * (len(prices))
        min_ = prices[0]
        for i in range(1, len(prices)):
            if min_ > prices[i-1]:
                min_ = prices[i-1]
            dp[i] = max(dp[i-1], prices[i] - min_)
        return dp[-1]
        
## 使用动态规划试试
1. 第i天有2个状态
持有, 之前持有 or 今天持有
卖出 今天卖出 or 之前卖出

dp = [0, 0] * len(prices)  # [持有, 卖出]
dp[0][0] = -prices[0]
dp[i][0] = dp[i-1][0], -prices[i]
dp[i][1] = dp[i-1][1], dp[i-1][0] + prices[i]

code 动态规划

class Solution:
    def maxProfit(self, prices) -> int:
        dp =[[0, 0]] * len(prices) ## [持有, 卖出]
        dp[0][0] = -prices[0]
        for i in range(1, len(prices)):
            dp[i][0] = max(dp[i - 1][0], -prices[i])
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])
        return dp[-1][1]

总结

周一
动态规划:开始打家劫舍! (opens new window)中就是给一个数组相邻之间不能连着偷,如何偷才能得到最大金钱。

确定dp数组含义
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。

确定递推公式
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

dp数组如何初始化
vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
确定遍历顺序
从前到后遍历

举例推导dp数组
以示例二,输入[2,7,9,3,1]为例。

198.打家劫舍

红框dp[nums.size() - 1]为结果。

# 周二
动态规划:继续打家劫舍! (opens new window)就是数组成环了,然后相邻的不能连着偷。

这里主要考虑清楚三种情况:

情况一:考虑不包含首尾元素
213.打家劫舍II

情况二:考虑包含首元素,不包含尾元素
213.打家劫舍II1

情况三:考虑包含尾元素,不包含首元素
213.打家劫舍II2

需要注意的是,“考虑” 不等于 “偷”,例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素!对于情况三,取nums[1] 和 nums[3]就是最大的。

所以情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。

成环之后还是难了一些的, 不少题解没有把“考虑房间”和“偷房间”说清楚。

这就导致大家会有这样的困惑:“情况三怎么就包含了情况一了呢?本文图中最后一间房不能偷啊,偷了一定不是最优结果”。

所以我在本文重点强调了情况一二三是“考虑”的范围,而具体房间偷与不偷交给递推公式去抉择。

剩下的就和动态规划:开始打家劫舍! (opens new window)是一个逻辑了。

#周三

动态规划:还要打家劫舍! (opens new window)这次是在一棵二叉树上打家劫舍了,条件还是一样的,相临的不能偷。

这道题目是树形DP的入门题目,其实树形DP其实就是在树上进行递推公式的推导,没有什么神秘的。

这道题目我给出了暴力的解法:

class Solution {
public:
    int rob(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right == NULL) return root->val;
        // 偷父节点
        int val1 = root->val;
        if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left,相当于不考虑左孩子了
        if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right,相当于不考虑右孩子了
        // 不偷父节点
        int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子
        return max(val1, val2);
    }
};
当然超时了,因为我们计算了root的四个孙子(左右孩子的孩子)为头结点的子树的情况,又计算了root的左右孩子为头结点的子树的情况,计算左右孩子的时候其实又把孙子计算了一遍。

那么使用一个map把计算过的结果保存一下,这样如果计算过孙子了,那么计算孩子的时候可以复用孙子节点的结果。

代码如下:

class Solution {
public:
    unordered_map<TreeNode* , int> umap; // 记录计算过的结果
    int rob(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right == NULL) return root->val;
        if (umap[root]) return umap[root]; // 如果umap里已经有记录则直接返回
        // 偷父节点
        int val1 = root->val;
        if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left
        if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right
        // 不偷父节点
        int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子
        umap[root] = max(val1, val2); // umap记录一下结果
        return max(val1, val2);
    }
};
最后我们还是给出动态规划的解法。

因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。

确定递归函数的参数和返回值
vector<int> robTree(TreeNode* cur) {
dp数组含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?

别忘了在递归的过程中,系统栈会保存每一层递归的参数。

确定终止条件
在遍历的过程中,如果遇到空间点的话,很明显,无论偷还是不偷都是0,所以就返回

if (cur == NULL) return vector<int>{0, 0};
确定遍历顺序
采用后序遍历,代码如下:

// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); //// 中

确定单层递归的逻辑
如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0];

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

代码如下:

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); //// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
举例推导dp数组
以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)

337.打家劫舍III

最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。

树形DP为什么比较难呢?

因为平时我们习惯了在一维数组或者二维数组上推导公式,一下子换成了树,就需要对树的遍历方式足够了解!

大家还记不记得我在讲解贪心专题的时候,讲到这道题目:贪心算法:我要监控二叉树! (opens new window),这也是贪心算法在树上的应用。那我也可以把这个算法起一个名字,叫做树形贪心

“树形贪心”词汇从此诞生,来自「代码随想录」

#周四
动态规划:买卖股票的最佳时机 (opens new window)一段时间,只能买卖一次,问最大收益。

这里我给出了三种解法:

暴力解法代码:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            for (int j = i + 1; j < prices.size(); j++){
                result = max(result, prices[j] - prices[i]);
            }
        }
        return result;
    }
};
时间复杂度:O(n^2)
空间复杂度:O(1)
贪心解法代码如下:

因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int low = INT_MAX;
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            low = min(low, prices[i]);  // 取最左最小价格
            result = max(result, prices[i] - low); // 直接取最大区间利润
        }
        return result;
    }
};
时间复杂度:O(n)
空间复杂度:O(1)
动规解法,版本一,代码如下:

// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(2));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }
        return dp[len - 1][1];
    }
};
时间复杂度:O(n)
空间复杂度:O(n)
从递推公式可以看出,dp[i]只是依赖于dp[i - 1]的状态。

那么我们只需要记录 当前天的dp状态和前一天的dp状态就可以了,可以使用滚动数组来节省空间,代码如下:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);  # 持有
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);  # 卖出
        }
        return dp[(len - 1) % 2][1];
    }
};
时间复杂度:O(n)
空间复杂度:O(1)
建议先写出版本一,然后在版本一的基础上优化成版本二,而不是直接就写出版本二。

总结

刚刚结束了背包问题,本周主要讲解打家劫舍系列。

劫舍系列简单来说就是 数组上连续元素二选一,成环之后连续元素二选一,在树上连续元素二选一,所能得到的最大价值。

那么这里每一种情况 我在文章中都做了详细的介绍。

周四我们开始讲解股票系列了,大家应该预测到了,我们下周的主题就是股票!敬请期待吧!

代码随想录温馨提醒:投资有风险,入市需谨慎!

122.买卖股票的最佳时机II

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [7,1,5,3,6,4]

输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:

输入: [1,2,3,4,5]

输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入: [7,6,4,3,1]

输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

1 <= prices.length <= 3 * 10 ^ 4
0 <= prices[i] <= 10 ^ 4
#算法公开课

思路

所以我们重点讲一讲递推公式。

这里重申一下dp数组的含义:
dp[i][0] 表示第i天持有股票所得现金。
dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
第i天买入股票,所得现金 = 昨天不持有股票的所得现金 -  今天的股票价格 即:dp[i - 1][1] - prices[i]
注意这里和121. 买卖股票的最佳时机 (opens new window)唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况。

在121. 买卖股票的最佳时机 (opens new window)中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
注意这里和121. 买卖股票的最佳时机就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!

代码如下:(注意代码中的注释,标记了和121.买卖股票的最佳时机唯一不同的地方)

自己理一遍思路

1. 第 i 天持有股票
   第 i 天买入,则第 i-1 天卖出 : dp[i-1][1] -price[i]
   第 i 天持有, 则第 i-1 天买入: dp[i-1][0]

2. 第 i 天不持有股票
    第 i 天卖出, 第 i-1 天持有: dp[i-1][0] + price[i]
    第 i 天不卖出,第 i-1 天卖出: dp[i-1][1]

code

class Solution:
    def maxProfit(self, prices) -> int:
        if len(prices) <= 1:return 0
        dp = [[0,0]] * len(prices)
        dp[0][0] = -prices[0]
        for i in range(1, len(prices)):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
        return dp[-1][1]

优化 减少空间

class Solution:
    def maxProfit(self, prices) -> int:
        if len(prices) <= 1:return 0
        dp = [[0,0]] * 2
        dp[0][0] = -prices[0]
        for i in range(1, len(prices)):
            dp[i % 2][0] = max(dp[(i-1) % 2][0], dp[(i-1) % 2][1]-prices[i])    # 持有
            dp[i % 2][1] = max(dp[(i-1) % 2][1], dp[(i-1) % 2][0] + prices[i])  # 卖出
        return dp[-1][1]

再理一遍思路

对于只卖一次的情况
第 i 天 持有
    第 i 天买入 -price[i]
    第 i-1 天买入 dp[i-1][0]
dp[i][0] = max(dp[i-1][0], -price[i])

第 i 天不持有:
    第 i 天卖出: dp[i-1][0] + nums[i]
    第 i 天之前卖出: dp[i-1][1]
dp[i][1] = max(dp[i-1][1] , dp[i-1][0] + nums[i])


对于多次买卖的情况 : 与上面的差异主要是 买入之前 会考虑前一次卖出
第 i 天 持有
    第 i 天买入,则 i-1 天卖出: dp[i-1][1] -price[i]
    第 i-1 天买入 dp[i-1][0]
dp[i][0] = max(dp[i-1][0],  dp[i-1][1] -price[i])

第 i 天不持有:
    第 i 天卖出: dp[i-1][0] + nums[i]
    第 i 天之前卖出: dp[i-1][1]
dp[i][1] = max(dp[i-1][1] , dp[i-1][0] + nums[i])

123.买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:
输入:prices = [3,3,5,0,0,3,1,4]
输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

示例 2:
输入:prices = [1,2,3,4,5]
输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:
输入:prices = [7,6,4,3,1]
输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

示例 4:
输入:prices = [1] 输出:0
提示:

1 <= prices.length <= 10^5
0 <= prices[i] <= 10^5

思路

最多可以交易2笔交易
至多买卖2次, : 可以不买卖 or  买卖一次 or 买卖2次
接来下我用动态规划五部曲详细分析一下:

确定dp数组以及下标的含义
一天一共就有五个状态,

没有操作 (其实我们也可以不设置这个状态)
第一次持有股票
第一次不持有股票
第二次持有股票
第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

dp[i][0]: 第 i 天没有操作,第 i-1 天没有操作:dp[i][0] = dp[i-1][0]

dp[i][1]: 第 i 天第一次持有股票, 今天买入 or 之前买入
今天买入 (昨天未买入,未操作) dp[i-1][0] - price[i]
之前买入 (昨天持有状态)dp[i-1][1]
 所以 第 i 天第一次持有股票  = max(今天买入, 昨天持有)
dp[i][1] = max(dp[i-1][0] - price[i], dp[i-1][1])

dp[i][2] : 第 i 天第一次不持有股票, 今天不持有 or 之前不持有
今天不持有:今天卖出--昨天持有 dp[i-1][1] + price[i]
之前不持有:昨天卖出 dp[i-1][2]
dp[i][1] = max(dp[i-1][1] + price[i], dp[i-2][1])

dp[i][3]: 和dp[i][1]类似
第二次持有: 第二次买入 or 今天不操作(延续昨天第二次持有的状态)
今天持有:今天买入---昨天第一次卖出,才会有今天第二次买入: dp[i-1][2] - price[i]
今天持有: 但是今天没有操作,即是今天延续昨天的第二次买入的状态:dp[i-1][3]
dp[i][3] = max(dp[i-1][2] - price[i], dp[i-1][3])

dp[i][4]: 和dp[i][2]类似
第二次不持有: 今天第二次卖出 or 不操作(延续昨天第二次不持有的状态)
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
dp[i][4] = max(dp[i-1][3] + price[i], dp[i-1][4])

初始化
dp = [[0] * 5] * len(prices)
dp[0][0]  没有任何操作: dp[0][0] = 0, 表示没有买入和卖出
dp[0][1]1 次买入 dp[0][1] = -price[0]
dp[0][2]1 次卖出, 因为还没有买入记录,所以卖出为0, dp[0][2] = 0
dp[0][3]2 次 买入, 因为买第一次卖出为0, 所有 第 2 次买入为 dp[0][3]  = 0 - prices[0]
dp[0][4]2 次 不持有,刚开始 最大只能是0, dp[0][4] = 0

i ---> i-1  从前往后遍历

code

lens = len(prices)
if lens <= 1: return 0
dp = [[0] * 5] * len(prices)
dp[0][1] = -prices[0]
dp[0][3] = -prices[0]

for i in range(1, lens):
    dp[i][0] = dp[i-1][0]
    dp[i][1] = max(dp[i-1][0] -prices[i], dp[i-1][i])
    dp[i][2] = max(dp[i-1][1] + prices[i], dp[i-1][2])
    dp[i][3] = max(dp[i-2][2] - prices[i], dp[i-1][3])
    dp[i][4] = max(dp[i-1][3] + prices[i], dp[i-1][4])
return dp[-1][4]




from 代码随想录学习

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

确定递推公式
达到dp[i][1]状态,有两个具体操作:

操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;0天做第一次买入的操作,dp[0][1] = -prices[0];0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

举例推导dp数组
以输入[1,2,3,4,5]为例

123.买卖股票的最佳时机III

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};
时间复杂度:O(n)
空间复杂度:O(n × 5)
当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<int> dp(5, 0);
        dp[1] = -prices[0];
        dp[3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[1] = max(dp[1], dp[0] - prices[i]);
            dp[2] = max(dp[2], dp[1] + prices[i]);
            dp[3] = max(dp[3], dp[2] - prices[i]);
            dp[4] = max(dp[4], dp[3] + prices[i]);
        }
        return dp[4];
    }
};
时间复杂度:O(n)
空间复杂度:O(1)
大家会发现dp[2]利用的是当天的dp[1]。 但结果也是对的。

我来简单解释一下:

dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。

如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是今天再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。

这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去!

对于本题,把版本一的写法研究明白,足以!

#拓展
其实我们可以不设置,‘0. 没有操作’ 这个状态,因为没有操作,手上的现金自然就是0, 正如我们在 121.买卖股票的最佳时机 (opens new window)122.买卖股票的最佳时机II (opens new window)也没有设置这一状态是一样的。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值