CNN 1d 输入输出维度

CNN 1d 输入输出维度:

tf.layers.conv1d函数解析(一维卷积)
更正: tf.nn.conv1d()详细正确解析

Conv1D、Conv2D、Conv3D

pytorch之nn.Conv1d详解

在这里插入图片描述


CNN 2d 3d 输入输出维度:

1D CNN+2D CNN+3D CNN

区别:
1维卷积,核沿1个方向移动。一维CNN的输入和输出数据是2维的。主要用于时间序列数据
2维卷积,核沿2个方向移动。二维CNN的输入输出数据是3维的。主要用于图像数据
3维卷积,核沿3个方向移动。三维CNN的输入输出数据是4维的。主要用于3D图像数据(MRI,CT扫描)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值