easy 买卖股票的最佳时机 动态规划

在这里插入图片描述

在这里插入图片描述


会超时的暴力法:

假设在第 i 天 买入 ,记录在第 i+1 天,一直到交易日结束时,卖出的价格,选出最高价。


class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int ans = 0;
        int n = prices.size();
        for(int i=0; i<n; i++){
            for(int j=i+1; j<n; j++){
                ans = max(ans, prices[j] - prices[i]);
            }
        }
        return ans;
    }
};

在这里插入图片描述
这里 N 是股价数组的长度


一次遍历:

假设在第 i 天 卖出 股票,记录第 i 天以前股票市场的最低价,假设在最低价时买入。即知道第 i 天卖出的最大利润是多少

c++


class Solution {
public:
    int maxProfit(vector<int>& prices) {

        int minprice = prices[0];  // c++ 定义正无穷 1e9 = 10^9 
        int maxProfit = 0;
        for (auto price : prices){  // c++ 遍历 vector 元素
            maxProfit = max(price - minprice, maxProfit);
            minprice = min(minprice, price);
        }
        return maxProfit;
        
    }
};

python


class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        minprice = prices[0]
        maxProfit = 0

        for i in prices:
            maxProfit = max(maxProfit, i-minprice)  # 减去当日之前的最低价
            minprice = min(i, minprice)

        return maxProfit

在这里插入图片描述


动态规划:

动态规划的精髓:每一步只需要判断:选 or 不选。

c++


dp[i]=max(dp[i−1],prices[i]−minprice)  // dp[i] 表示前 i 天的最大利润


class Solution {
public:
    int maxProfit(vector<int>& prices) {
    int n = prices.size();
    if(n==0){
        return 0;
    }
    int minprice = prices[0];  // 从第一个开始遍历
    vector<int> dp(n,0);    // 初始化利润vector,长度为5,初始值均为0

    for(int i=1; i<n; i++){  // 假设在第1天之后卖出
        minprice = min(minprice, prices[i]);  // 记录遍历过的最低买入价
        dp[i] = max(dp[i-1], prices[i] - minprice);
    }

    return dp[n-1];  // dp[i] 记录当前时刻卖出,最大利润
    }
};

python


class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        if n==0:
            return 0

        dp = [0 for _ in range(n)]   # 创建利润列表
        minprice = prices[0]  # 初始化当天以前最低价

        for i in range(1,n):
            dp[i] = max(dp[i-1], prices[i]-minprice)
            minprice = min(minprice, prices[i])

        return dp[n-1]

在这里插入图片描述


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值