形式化方法之命题逻辑证明

命题逻辑

语法规则

P : : = T ∣ ⊥ ∣ x ∣ P ∧ P ∣ P ∨ P ∣ P → P ∣ ¬ P P::= T|⊥| x | P ∧P | P ∨ P | P → P | ¬ P P::=TxPPPPPP¬P

用符号P代表任意逻辑命题,它由几种不同语法形式组成:符号T分别代表两个逻辑常量“真和“假”;小写符号x代表一个原子命题变量;这三种语法形式都是基本的,因此可称它们为原子命题

还可以通过连接词连接子命题,而构成复合命题;具体的有四种联接词:合取、析取、蕴含和否定¬,其中前三个算符是二元的,最后一个算符是一元的。

自然演绎系统

环境

环境 Г 是由n(n >=0)个命题构成的命题列表:
Γ = P 1 ,   . . .   , P n \varGamma = P_1,\ ...\ ,P_n Γ=P1, ... ,Pn
特别的,若n = 0,则称 Г 为空环境。

断言

断言是由环境 Г 和命题P构成的元组:
Γ   ├   P \varGamma \ ├ \ P Γ  P

证明规则

证明规则是形如:
Γ 1 ├   P 1   . . .   Γ n ├   P n Γ   ├   P ( R u l e − N a m e ) \frac{\varGamma_1├ \ P_1 \ ...\ \varGamma_n├\ P_n }{\varGamma \ ├ \ P} \quad\quad\quad\quad\quad(Rule-Name) Γ  PΓ1 P1 ... Γn Pn(RuleName)
的一条公式,其中n >= 0。

证明规则由三部分组成:

第一部分是横向上方的n个断言:也被成为是规则的n个前提
Γ i   ├   P i   , 1 ≤ i ≤ n \varGamma_i\ ├ \ P_i\ ,\quad 1≤i≤n Γi  Pi ,1in
第二部分是横线下方唯一的断言:也被成为是规则的结论
Γ   ├   P \varGamma \ ├ \ P Γ  P
第三部分是横线右侧的规则的名字 Rule-Name,它唯一地标识了这条规则

十四条规则

1、单个命题

Γ , P   ├   P ( V a r ) \frac{}{\varGamma,P \ ├ \ P} \quad\quad\quad\quad\quad(Var) ΓP  P(Var)

规则Var是一条公理,表示若命题P在环境中出现,现任可推出P成立。

2、真 T – 引入

Γ ├ T ( T I ) \frac{}{\varGamma \quad├ \quad T} \quad\quad\quad\quad\quad(T I) ΓT(TI)

规则T I也是一条公理,表示在任意环境 Г 中,真T都无条件成立。

3、真 T – 消去

Γ ├ ⊥ Γ ├ P ( ⊥ E ) \frac{\varGamma \quad├ \quad ⊥}{\varGamma \quad├ \quad P} \quad\quad\quad\quad\quad(⊥ E) ΓPΓ(E)

规则⊥ E 表示,若能证明“假”,则可以推出任意命题P为真,即假的推出一切

4、合取 ∧ – 引入

Γ ├   P Γ ├   Q Γ ├ P ∧ Q ( ∧ I ) \frac{\varGamma ├ \ P \quad \quad \varGamma ├ \ Q}{\varGamma \quad├ \quad P∧Q} \quad\quad\quad\quad\quad(∧ I) ΓPQΓ PΓ Q(I)

规则∧I 表示,若若前提中的命题P和Q都成立,则可推出二者的合取式P∧Q成立。

5、6、合取 ∧ – 消去1、消去2

Γ ├ P ∧ Q Γ ├   P ( ∧ E 1 ) \frac{\varGamma \quad├ \quad P∧Q}{\varGamma ├ \ P} \quad\quad\quad\quad\quad(∧ E_1) Γ PΓPQ(E1)

Γ ├ P ∧ Q Γ ├   Q ( ∧ E 2 ) \frac{\varGamma \quad├ \quad P∧Q}{ \varGamma ├ \ Q} \quad\quad\quad\quad\quad(∧ E_2) Γ QΓPQ(E2)

规则∧E1∧E2 表示,若合取命题P∧Q成立,则可分别推出P和Q成立。

7、8、析取 ∨ – 引入1、引入2

Γ ├   P Γ ├ P ∨ Q ( ∨ I 1 ) \frac{\varGamma ├ \ P}{\varGamma \quad├ \quad P∨Q} \quad\quad\quad\quad\quad(∨ I_1) ΓPQΓ P(I1)

Γ ├   Q Γ ├ P ∨ Q ( ∨ I 2 ) \frac{\varGamma ├ \ Q}{\varGamma \quad├ \quad P∨Q} \quad\quad\quad\quad\quad(∨ I_2) ΓPQΓ Q(I2)

规则∨I1∨I2 表示,只要命题P或Q成立,就能推出P∨Q成立。

9、析取 ∨ – 消去

Γ   ├   P ∨ Q Γ , P ├   R Γ , Q ├   R Γ ├   R ( ∨ E ) \frac{\varGamma \ ├ \ P∨Q\quad\quad \varGamma,P ├ \ R\quad\quad \varGamma,Q ├ \ R}{\varGamma ├ \ R} \quad\quad\quad\quad\quad(∨ E) Γ RΓ  PQΓP RΓQ R(E)

规则∨E 表示,若环境 Г 能够推出析取命题P∨Q成立,且在假定命题 P 或 Q 成立的前提下,都能推出命题 R 成立,则可在环境 Г 下推出命题 R 成立

10、蕴含 → – 引入

Γ , P ├   Q Γ ├   P → Q ( → I ) \frac{\varGamma,P ├ \ Q}{\varGamma ├ \ P→Q} \quad\quad\quad\quad\quad(→ I) Γ PQΓP Q(I)

规则→I 表示,若能在环境 Г,P 下推出析取命题 Q 成立,则可在环境 Г 下推出蕴含命题 P→Q 成立。

11、蕴含 → – 消去

Γ ├   P → Q Γ ├   P Γ ├   Q ( → E ) \frac{\varGamma ├ \ P→Q \quad\quad \varGamma ├ \ P}{\varGamma ├ \ Q} \quad\quad\quad\quad\quad(→ E) Γ QΓ PQΓ P(E)

规则→E 表示,若命题 P→Q 和 P 都成立,则可推出命题Q成立。

12、否定 ¬ – 引入

Γ , P ├   ⊥ Γ ├   ¬ P ( ¬ I ) \frac{\varGamma,P ├ \ ⊥}{\varGamma ├ \ ¬P} \quad\quad\quad\quad\quad(¬ I) Γ ¬PΓP (¬I)

规则¬ I 表示,若在假设命题P成立的前提下,能够推出“假”,则可推出命题P的否定¬P

13、否定 ¬ – 消去

Γ ├   P Γ ├   ¬ P Γ ├   ⊥ ( ¬ E ) \frac{\varGamma ├ \ P \quad\quad \varGamma ├ \ ¬P}{\varGamma ├ \ ⊥} \quad\quad\quad\quad\quad(¬ E) Γ Γ PΓ ¬P(¬E)

规则¬ E 表示,若在环境 Г 下,能够同时推出命题P和它的否定 ¬P ,则可推出“假”

14、双重否定 ¬¬ – 消去

Γ ├   ¬ ¬ P Γ ├   P ( ¬ ¬ E ) \frac{\varGamma ├ \ ¬¬P}{\varGamma ├ \ P} \quad\quad\quad\quad\quad(¬¬E) Γ PΓ ¬¬P(¬¬E)

规则¬¬ E 表示,若能推出命题P的双重否定 ¬¬P,则可推出命题P。

命题证明

这一部分要求我们用上面的14个基本的证明规则,去证明一个又一个复杂的命题。

刚开始学的时候,课上一头雾水,后来课下花时间消化了之后,的确找到一些技巧了。总结如下:

技巧1

环境 Г 就是前提,是已知的假设,可以是很多个命题,也可以为空。不可被拆分,只能在初始环境上添加命题

技巧2

把上述规则化简并进一步总结,就能得出很多命题证明问题的原型了。

这里我按规则的结论(即横线下方的断言),将问题总结为六大类型

1、Q

Γ ├   Q { ( 1 ) 证 Γ ├ ⊥ ( 2 ) 证 Γ ├   P ∧ Q   或   Γ ├   Q ∧ P ( 3 ) 证 Γ ├   P ∨ R 且 Γ , P ├   Q 且 Γ , R ├   Q ( 4 ) 证 Γ ├   P → Q 且 Γ ├   P ( 5 ) 证 Γ ├   ¬ ¬   Q \varGamma ├ \ Q \begin{cases} (1)\quad 证 \quad \varGamma ├ ⊥ \quad\quad\quad \\ (2)\quad 证 \quad \varGamma ├ \ P∧Q \ 或 \ \varGamma ├ \ Q∧P \quad\quad\quad\\ (3)\quad 证 \quad \varGamma ├ \ P∨R \quad 且 \quad \varGamma,P ├ \ Q \quad 且 \quad \varGamma,R ├ \ Q \quad\quad\quad \\ (4)\quad 证 \quad \varGamma ├ \ P→Q \quad 且 \quad \varGamma ├ \ P \quad\quad\quad \\ (5)\quad 证 \quad \varGamma ├ \ ¬¬ \ Q\quad\quad\quad \end{cases} Γ Q(1)Γ(2)Γ PQ  Γ QP(3)Γ PRΓP QΓR Q(4)Γ PQΓ P(5)Γ ¬¬ Q

其中,规则(2)(4)是比较常用的。

2、P∧Q

Γ ├   P ∧ Q   只 有 证 : Γ ├   P 且 Γ ├   Q \varGamma ├ \ P∧Q \ \quad 只有证:\quad \varGamma ├ \ P \quad 且 \quad \varGamma ├ \ Q \\ Γ PQ :Γ PΓ Q

3、P∨Q

Γ ├   P ∨ Q   可 以 证   Γ ├   P ,   或 者 证   Γ ├   Q \varGamma ├ \ P∨Q \ \quad 可以证 \ \varGamma ├ \ P ,\ 或者证 \ \varGamma ├ \ Q \\ Γ PQ  Γ P  Γ Q

4、P→Q

Γ ├   P → Q   只 有 证 : Γ , P ├   Q \varGamma ├ \ P→Q \ \quad 只有证:\quad \varGamma,P ├ \ Q \quad \\ Γ PQ :Γ,P Q

5、⊥

Γ ├   ⊥   只 有 证 : Γ ├   P 且 Γ ├   ¬ P \varGamma ├ \ ⊥ \ \quad 只有证:\quad \varGamma ├ \ P \quad 且 \quad \varGamma ├ \ ¬P \\ Γ  :Γ PΓ ¬P

6、¬Q

Γ ├   ¬ Q   只 有 证 : Γ , Q ├   ⊥ \varGamma ├ \ ¬Q \ \quad 只有证:\quad \varGamma,Q ├ \ ⊥ \\ Γ ¬Q :Γ,Q 

上述类型中,1、2、3、4是比较常见的。

还有重要的一点:上面的类型2~6,其实都可以看成是一个类型1,因为环境中也许就包含了他自己,举个栗子:

要证明`P→Q`,并且此时环境中含有命题`(P→Q)∧(P→R)`,那么其实就可以将`P→Q`看成是类型1,而不是类型4。

所以还是要灵活运用上面的规则。

1、真T在任意环境下都成立,所以也就没有证明了。
2、细心的你们也许会发现,公理Var也没有在上面,嘿嘿,先卖个关子。

技巧3

拿到一个证明题,该怎么一步步去证明呢?

大体的思路就是:把结论一步步地拆分成一个或多个中间目标,这些中间目标尽可能是环境 Г 所包含的。一旦包含了,就用公理Var

比如:需要证明Q:(注意这里的Q是一个复合命题,不是原子命题)

可以将其拆分为一个中间目标:P∧Q

也可以拆分成两个目标:PP→Q

. . . . . .

环境 Г 里有哪种中间目标,就拆分成哪种中间目标。

值得一提的是:通过蕴含引入规则,可以为环境 Г 增加新的命题,一般也是证明时使用的第一条规则。

小试牛刀

道理方法都讲完了,是时候练一练了:
├ ( P → R ) ∧ ( Q → R )   →   ( P ∧ Q → R ) ├ \quad (P→R)∧(Q→R) \ → \ (P∧Q→R) (PR)(QR)  (PQR)
1、首先,分析题目。需要证明的结论是类型4:P→Q;并且是一个空环境。
按照之前类型4的技巧:只能使用蕴含引入规则(→ I),如下:
在这里插入图片描述
2、这时环境中就有了新的命题(P→R)∧(Q→R)。并且结论又是类型4,继续使用蕴含引入规则(→ I)
在这里插入图片描述
3、结论变成了类型1:Q,这就有很多思路了。通过观察环境中的命题,可以发现和(3)(4)都很类似,那就选个简单的(4)吧,即蕴含消去规则 (→ E)
在这里插入图片描述
4、分成了两个子目标:P→RP
先来看P→R,根据上面的技巧提示,把他看成是类型1,因为环境中出现了(P→R)∧(Q→R),使用类型1的方法2,即合取消去1规则(∧E1)

再来看P,发现环境中含有P∧Q,所以也用合取消去1规则(∧E1)

推导如下:
在这里插入图片描述
5、现在两个子结论都在各自的环境中作为一个单独命题出现了,显而易见,使用公理Var收官:
在这里插入图片描述
以上就是完整的证明过程。

练习

理论学习过后,需要不断地练习加以巩固,以下两个小题目可以自己动手试试:
( 1 )    ├ ( P → Q ∧ R )   →   ( P → Q ) ∧ ( P → R ) (1)\ \ \quad\quad\quad\quad\quad├ \quad (P→Q∧R) \ → \ (P→Q)∧(P→R) (1)  (PQR)  (PQ)(PR)

( 2 ) ├ ( P ∧ ( Q ∧ R ) )   →   ( ( P ∧ Q ) ∧ R ) (2)\quad\quad\quad\quad\quad\quad\quad├ \quad (P∧(Q∧R)) \ → \ ((P∧Q)∧R) (2)(P(QR))  ((PQ)R)

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cool同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值