AcWing 60. 礼物的最大价值(C++)- 线性dp

这是一个使用动态规划解决矩阵中最优路径的问题。代码定义了一个名为`Solution`的类,包含一个公共成员函数`getMaxValue`,该函数接收一个二维整数网格并返回从起点到终点的最大路径总和。初始化一个与输入网格相同大小的二维动态规划数组`dp`,通过遍历网格更新`dp`数组,最后返回右下角的值作为最大路径总和。
摘要由CSDN通过智能技术生成

题目链接:https://www.acwing.com/problem/content/description/56/
题目如下:在这里插入图片描述

class Solution {
public:
    int getMaxValue(vector<vector<int>>& grid) {
        int m=grid.size();
        if(m==0) return 0;
        int n=grid[0].size();
        //dp[i][j]:表示从起点到达(i,j)的最大总价值
        //因为f(i,j)=max(f(i-1,j),f(i,j-1))+grid(i,j),所以初始数组为m+1,n+1
        vector<vector<int>> dp(m,vector<int>(n,0));
        
        //初始化
        dp[0][0]=grid[0][0];
        for(int i=1;i<m;i++) dp[i][0]=dp[i-1][0]+grid[i][0];
        for(int j=1;j<n;j++) dp[0][j]=dp[0][j-1]+grid[0][j];
        
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        }
        
        return dp[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值