Codeforces gym 101243 C - Desktop

链接

http://codeforces.com/gym/101243/

题意

给一个宽高为w,h的矩阵,向里面塞2*2的小矩形,小矩形可以互相覆盖,但必须保证一个小矩形至少有一半是露在外面的,输出最多能摆的矩形数量和任一方案。

分析

图1
前两排可以以上图的方式摆放,共计(w - 1)个。
图2
后几排以如上方式摆放,注意如果w是奇数是无法摆满的。
图3
如果w为奇数,每两行需要添加如图所示的红矩形

交换w,h取较优答案

  • 注意输出顺序必须按你的方案的摆放顺序,即后输出的在上面

#include <bits/stdc++.h>
using namespace std;
int main()
{
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);
    vector<pii> ans;
    int h, w;
    scanf("%d %d", &h, &w);
    if (h == 1 || w == 1)
    {
        puts("0");
    }
    else
    {
        bool flag = false;
        int answ = (w - 1 + (w / 2) * (h - 2));
        if (w % 2 != 0) answ += (h - 2) / 2;
        int ansh = (h - 1 + (h / 2) * (w - 2));
        if (h % 2 != 0) ansh += (w - 2) / 2;
        if (answ >= ansh)
            flag = false;
        else
            flag = true;
        if (flag) swap(h, w);
        for (int i = 1; i < w; ++i)
        {
            ans.push_back(pii(1, i));
        }
        for (int i = 2; i < h; ++i)
        {
            for (int j = 1; j < w; j += 2)
            {
                ans.push_back(pii(i, j));
            }
        }
        if (w % 2 != 0)
        {
            for (int i = 3; i < h; i += 2)
            {
                ans.push_back(pii(i, w - 1));
            }
        }
        printf("%d\n", ans.size());
        for (int i = ans.size() - 1; i >= 0; --i)
        {
            if (flag == false) printf("%d %d\n", ans[i].first, ans[i].second);
            else printf("%d %d\n", ans[i].second, h - ans[i].first + 1);
        }
    }
    return 0;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值