赵zZZ
码龄7年
关注
提问 私信
  • 博客:15,960
    15,960
    总访问量
  • 8
    原创
  • 1,345,650
    排名
  • 8
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2017-10-04
博客简介:

qq_40491207的博客

查看详细资料
个人成就
  • 获得10次点赞
  • 内容获得14次评论
  • 获得46次收藏
创作历程
  • 9篇
    2020年
成就勋章
TA的专栏
  • Python笔记
    1篇
  • Latex
  • GNN+DA
    5篇
  • 异构图论文笔记
    2篇
  • Zero-Shot论文笔记
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Can't call numpy() on Variable that requires grad. Use var.detach().numpy() instead.

Can’t call numpy() on Variable that requires grad. Use var.detach().numpy() instead.数据属性:gradfn=<AddmmBackward>)grad_fn=<AddmmBackward>)gradf​n=<AddmmBackward>)data.numpy() ...
原创
发布博客 2020.05.08 ·
691 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Learning Disentangled Semantic Representation for Domain Adaptation-IJCAI-2019文章解读

Learning Disentangled Semantic Representation for Domain Adaptation-IJCAI-2019文章解读1. 摘要2.main contributions3. 可解耦的语义表达模型4. 理论证明详见论文5. 实验1. 摘要现有的大多数域适应方法无法从特征空间提取具有entangle domain information(域耦合信息)...
原创
发布博客 2020.04.01 ·
1728 阅读 ·
0 点赞 ·
4 评论 ·
6 收藏

DANE: Domain Adaptive Network Embedding IJCAI 2019

DANE: Domain Adaptive Network Embedding IJCAI 20191. 摘要2. Main contributions3. Proposed method1. 共享权重的GCN网络文章链接1. 摘要早前的embedding网络聚焦于学习单个图网络的节点表示,不能实现不同域之间的迁移,即domain adaptation。作者提出了一种新的基于多图的图卷积...
原创
发布博客 2020.04.02 ·
1024 阅读 ·
1 点赞 ·
2 评论 ·
4 收藏

Unsupervised Domain Adaptive Graph Convolutional Networks-WWW-2020论文笔记

2. Unsupervised Domain Adaptive Graph Convolutional Networks-WWW-2020论文链接1. 主要思想作者认为现有的GCN算法只能在单个domain(graph)中应用,无法实现跨域的迁移学习。提出了无监督域自适应图卷积网络。为有效获取图表达学习,作者构建了一个双图卷积网络,能够统一利用局部一致性和全局一致性进行特征聚合;再通过注意力...
原创
发布博客 2020.03.26 ·
1705 阅读 ·
3 点赞 ·
1 评论 ·
7 收藏

Graph neural Networks domain adaptive文章解读

GNN+DA文章解读1. GCAN: Graph Convolutional Adversarial Network for Unsupervised Domain Adaptation CVPR 20191. 主要思想2. main contributions3. 图卷积对抗网络1. GCAN: Graph Convolutional Adversarial Network for Unsup...
原创
发布博客 2020.03.26 ·
938 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

GCAN: Graph Convolutional Adversarial Network for Unsupervised Domain Adaptation CVPR 2019论文笔记

文章目录摘要1. 简介摘要为了在源域和目标域之间构建交互桥梁实现域自适应(domain adaptation),现阶段有三种重要的信息类型:数据结构、域标签和类标签。现有的领域适应方法大多只利用了上述信息的一种或两种类型,不能使它们相互补充和增强。与现有的方法不同,我们提出了一种端到端的图卷积对抗网络(GCAN),通过在统一的深度模型中对数据结构、域标签和类标签进行联合建模,实现无监督域自适应...
原创
发布博客 2020.03.26 ·
2349 阅读 ·
0 点赞 ·
5 评论 ·
7 收藏

Disentangled Graph Convolutional Networks解耦图卷积神经网络 ICML 2019

文章目录相关介绍摘要main contributionsDisenGCN: the Proposed Model1. DisenConv 的基本假设2. The DisenConv Layer理论分析论文链接:http://proceedings.mlr.press/v97/ma19a.html相关介绍摘要真实世界的图通常是在许多潜在因素的高度复杂交互作用下产生的。现有的图结构数据深度学习...
原创
发布博客 2020.03.24 ·
5009 阅读 ·
2 点赞 ·
2 评论 ·
13 收藏

Heterogeneous Graph-based Knowledge Transfer for Generalized Zero-shot Learning基于异构图的知识迁移

文章目录相关介绍摘要main contributions算法步骤1. 计算代表节点2. 异构图神经网络的构建3.训练过程4. 测试阶段论文链接:https://arxiv.org/abs/1911.09046相关介绍摘要作者提出了一种新的基于异构图的知识转移方法(HGKT),该方法利用图神经网络来实现对不可见类和实例的不可知。具体来说,利用所看到的类的高级代表节点构造一个结构化的异构图,这...
原创
发布博客 2020.03.23 ·
689 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

RGCN - Modeling Relational Data with Graph Convolutional Networks 使用图卷积网络对关系数据进行建模 ESWC 2018

此文章转载自:https://blog.csdn.net/yyl424525/article/details/102764903 ...
转载
发布博客 2020.03.23 ·
1813 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏