DANE: Domain Adaptive Network Embedding IJCAI 2019

文章链接

1. 摘要

  1. 早前的embedding网络聚焦于学习单个图网络的节点表示,不能实现不同域之间的迁移,即domain adaptation。
  2. 作者提出了一种新的基于多图的图卷积网络去学习可迁移的embedding。
  3. 节点的特征表示由两个共享参数的图网络得到(特征空间对齐)。
  4. 节点特征分布由对抗学习模块进行正则化(分布对齐)。

2. Main contributions

  1. 最早提出用across multiple graph network实现迁移学习(domain adaptation)。
  2. 两种对齐方式:特征空间对齐,分布对齐(可以实现双向domain adaptation)

3. Proposed method

如下图所示,该算法由两个部分构成:

  1. 共享权重的GCN网络。
  2. 对抗学习模块。

1. 共享权重的GCN网络

两个图网络对应源域和目标域,完全使用GCN网络。得到两个域的node embedding

2. 对抗学习正则化

同GAN类似,以第一部分的共享权重的图卷积网络为生成器,设计一个discriminator分辨嵌入向量是来自哪个域。输入向量来自源域则输出1,反之输出0。生成器的loss为:

为达到双向域适应,设计对抗训练的loss函数:

整体的loss函数:

3. 实验部分

数据集:

1. Paper Citation Networks: 包含两个网络A和B,每个节点是一篇文章,标签为所属领域,节点特征为由摘要构成的词频向量。
2. Co-author Networks: 包含两个网络A和B,每个节点是一个作者,每个作者都有一个或多个所属研究领域的标签,节点特征为由作者论文关键词构成的词频向量。

Baseline:
DeepWalk, LINE, Node2vec, unsupervised GraphSAGE(GCN version)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值