DANE: Domain Adaptive Network Embedding IJCAI 2019
1. 摘要
- 早前的embedding网络聚焦于学习单个图网络的节点表示,不能实现不同域之间的迁移,即domain adaptation。
- 作者提出了一种新的基于多图的图卷积网络去学习可迁移的embedding。
- 节点的特征表示由两个共享参数的图网络得到(特征空间对齐)。
- 节点特征分布由对抗学习模块进行正则化(分布对齐)。
2. Main contributions
- 最早提出用across multiple graph network实现迁移学习(domain adaptation)。
- 两种对齐方式:特征空间对齐,分布对齐(可以实现双向domain adaptation)。
3. Proposed method
如下图所示,该算法由两个部分构成:
- 共享权重的GCN网络。
- 对抗学习模块。
1. 共享权重的GCN网络
两个图网络对应源域和目标域,完全使用GCN网络。得到两个域的node embedding
2. 对抗学习正则化
同GAN类似,以第一部分的共享权重的图卷积网络为生成器,设计一个discriminator分辨嵌入向量是来自哪个域。输入向量来自源域则输出1,反之输出0。生成器的loss为:
为达到双向域适应,设计对抗训练的loss函数:
整体的loss函数:
3. 实验部分
数据集:
1. Paper Citation Networks: 包含两个网络A和B,每个节点是一篇文章,标签为所属领域,节点特征为由摘要构成的词频向量。
2. Co-author Networks: 包含两个网络A和B,每个节点是一个作者,每个作者都有一个或多个所属研究领域的标签,节点特征为由作者论文关键词构成的词频向量。
Baseline:
DeepWalk, LINE, Node2vec, unsupervised GraphSAGE(GCN version)