题目
实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须原地修改,只允许使用额外常数空间。
示例:
输入 → 输出
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
思路
举一个具体的例子来说明查找的思路,比如:2,5,6,9,7,0。
-
要找到其下一个排列,应该保持该序列的前半部分尽可能不变,然后交换后半部分的某些序列,因此查找交换位置的操作需要从序列末尾开始,也就是从例子中的 0 开始。
-
那么哪个交换位置是满足要求的呢?我们要查找的是比原序列稍微大一点的序列,因此从后往前查找交换位置的时候,只要找到第一个相邻升序对(即相邻两个元素是升序排列的),将升序对中较小的那个数字使用一个比它大一点的数字替换即可。也就是找到 6,9升序对 ,然后找到一个比 6 稍微大一点的数字替换。
(PS:为什么要找相邻升序对?反过来想,如果在序列中找不到一对相邻升序对,则代表该序列本身就是逆序的,比如: 9,7,6,5,2,0,那么我们不可能找到比该序列更大的序列,该序列的下一个序列就是最小的排列了。因此只要存在相邻升序对,我们就可以找到它,并替换掉小一点的那个数字,从而得到比它大一点的序列。)
-
那么从哪里找那个比 6 稍微大一点的数字呢?首先我们要求原序列的前半部分保持不变,因此我们只能从 6 的后面部分找, 因为 6,9 是第一个相邻升序对,因此 6 后面的序列都是逆序排布的,那么我们从序列末尾开始查找,找到的第一个比 6 大的数字一定是原序列后面部分最靠近 6 还比 6 大的数字,用它替换 6 就没问题了。此步骤我们得到的序列就是 2,5,7,9,6,0。
-
但这时我们发现该序列并不是最靠近 2,5,6,9,7,0 的序列呀,比它更靠近原序列的还有 [ 2,5,7,0,6,9 ] 、[ 2,5,7,0,9,6 ]、 [ 2,5,7,6,0,9 ] 和 [ 2,5,7,6,9,0 ] ,其中最靠近原序列的是 [ 2,5,7,0,6,9 ] ,我们可以观察到: 在 7 后面排布的序列变成升序序列后,该序列就是我们要找的那个。
-
那我们要对交换后的后半部分序列进行排序吗,复杂度最好都是 O(nlogn)。大可不必,我们观察到第三步得到的序列,交换前后 后半部分序列都必定是逆序排布的( [ 9,7,0]、[9,6,0] ),对原本逆序的序列求其升序排列,只需要将其翻转即可。
思路总结
- 从后往前找到原序列的第一个相邻升序对,得到其中较小的那个数字 i(也就是相邻升序对中靠前的那个数字);
- 从后往前找到第一个比数字 i 大的数字 j ,交换两者的位置;
- 交换后,对数字 j 后面的所有数字翻转其位置。
- 如果遇到没有相邻升序对的情况,直接翻转所有数字位置,即可获得最小序列。
代码
public void nextPermutation(int[] nums) {
int i = nums.length - 2;
//从后往前找到第一个顺序对
while (i >= 0 && nums[i + 1] <= nums[i]) {
i--;
}
//如果出现了顺序对,则i会停在大于0的索引处
//当然,如果没有出现顺序对,则 i = -1,会对所有数字进行翻转
if (i >= 0) {
int j = nums.length - 1;
//从后往前找到比nums[i]大的第一个数,
//因为i的位置是第一个升序对,所以从后往前找,
//找到第一个比nums[i]大的数字一定是i后面最靠近nums[i]的
while (j >= 0 && nums[j] <= nums[i]) {
j--;
}
//交换其位置,此后i+1到数组末尾必定都是逆序的
swap(nums, i, j);
}
//将索引i之后的数字顺序翻转,使其成为一个升序的序列,达到值的最小
reverse(nums, i + 1);
}
private void reverse(int[] nums, int start) {
int i = start, j = nums.length - 1;
//翻转操作使用双指针,可以不需要辅助数组
while (i < j) {
swap(nums, i, j);
i++;
j--;
}
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}