算法学习:416. 分割等和子集

分割等和子集

题目链接:力扣题目链接
难度:中等
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。


示例


输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

思路

  1. 确定dp数组及下标含义
    dp[j]表示 背包总容量是j,最大可以凑成j的子集总和为dp[j]。
  2. 确定递推公式
    相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
    所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
  3. dp数组如何初始化
    本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
  4. 确定遍历顺序
    如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

动态规划代码

class Solution{
	public boolean canPartition(int[] nums) {
        if(nums.length == 0 && nums == null)	return false;
        int sum = 0;
        for(int num : nums){
			sum += num;
		}
		//总和为奇数,不能平分
		if(sum % 2 !=0 )	return false;
		int target = sum / 2;
		int[] dp = new int[target + 1];
		for(int i = 0;i< nums.length ;i++){
			for(int j = target;j>=nums[i];j--){
				//物品 i 的重量是 nums[i],其价值也是 nums[i]
				dp[j] = Math.max(dp[j],dp[j-nums[i]] + nums[i]);	
			}
		}
		return dp[target] == target;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

As_theWind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值