分割等和子集
题目链接:力扣题目链接
难度:中等
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 :
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
思路
- 确定dp数组及下标含义
dp[j]表示 背包总容量是j,最大可以凑成j的子集总和为dp[j]。 - 确定递推公式
相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); - dp数组如何初始化
本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。 - 确定遍历顺序
如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
动态规划代码
class Solution{
public boolean canPartition(int[] nums) {
if(nums.length == 0 && nums == null) return false;
int sum = 0;
for(int num : nums){
sum += num;
}
//总和为奇数,不能平分
if(sum % 2 !=0 ) return false;
int target = sum / 2;
int[] dp = new int[target + 1];
for(int i = 0;i< nums.length ;i++){
for(int j = target;j>=nums[i];j--){
//物品 i 的重量是 nums[i],其价值也是 nums[i]
dp[j] = Math.max(dp[j],dp[j-nums[i]] + nums[i]);
}
}
return dp[target] == target;
}
}