最短路径最基本的三种算法【此后无良辰】

floyd

floyd()
{
	rep(k,1,n)
		rep(i,1,n)
			{
			//	if(a[i][k]==maxn||i==k) continue;
				rep(j,1,n)
				{
					a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
				}
			}
}

三重循环,k为枚举中间点
方便简单,n3爆时间

spfa

void spfa()
{
	for(int i=1;i<=n;i++) dis[i]=inf;
	queue <int> q;
	dis[v0]=0;q.push(v0);vis[v0]=1;
	while(!q.empty())
	{
		int u=q.front();q.pop();vis[u]=0;
		for(int i=e[u].head;i;i=e[i].next)
		{
		int v=e[i].v,w=e[i].w;
		if(dis[v]>dis[u]+w){
		dis[v]=dis[u]+w;
		if(!vis[v])
		{q.push(v);vis[v]=1}
					}
		}
	}

最实用的,但可能会被数据卡成n*m
靠队列更新,根据三角形定则来进行放缩;可判负环
只要判断一个点进入次数是否大于n
Djstl

void Djstl(int x)
{
 priority_queue<int,vector<int>,cmp> q;
 dis[x]=0;q.push(x);
 while(!q.empty())
 {
  int u=q.top();q.pop();
  if(!tag[u])
  {
   tag[u]=1;
   for(int i=e[u].first;i;i=e[i].next)
   {
    int v=e[i].v,w=e[i].w;
    dis[v]=min(dis[v],dis[u]+w);
    q.push(v);
   }
  }
 }
}

邻接矩阵 O(n^2)
邻接表 O(n^2)
邻接表+binary heap O((n+m)logn)
邻接表+fibonacci heap O(m+nlogn)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值