一道题解释逆向记忆化搜索

题面描述

在这里插入图片描述

基本思路

记忆化搜索
在这里插入图片描述

class Solution {
public:
    int n;
    vector<vector<int>> rec;
    vector<int> val;
    int dfs(int left,int right)
    {
        if(left>=right-1)
        return 0;
        if(rec[left][right]!=-1)
        return rec[left][right];
        for(int i=left+1;i<right;i++)
        {
            int sum=val[i]*val[left]*val[right];
            sum+=dfs(left,i)+dfs(i,right);
            rec[left][right]=max(rec[left][right],sum);
            
        }
        return rec[left][right];
    }
    int maxCoins(vector<int>& nums) {
        n=nums.size();
        val.resize(n+2);
        for(int i=1;i<=n;i++)
        val[i]=nums[i-1];
        val[0]=val[n+1]=1;
        rec.resize(n+2,vector<int>(n+2,-1));
        return dfs(0,n+1);
    }
};

动态规划
和记忆化搜索的思路一样,反向dp

class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n = nums.size();
        vector<vector<int>> rec(n + 2, vector<int>(n + 2));
        vector<int> val(n + 2);
        val[0] = val[n + 1] = 1;
        for (int i = 1; i <= n; i++) {
            val[i] = nums[i - 1];
        }
        for (int i = n - 1; i >= 0; i--) {
            for (int j = i + 2; j <= n + 1; j++) {
                for (int k = i + 1; k < j; k++) {
                    int sum = val[i] * val[k] * val[j];
                    sum += rec[i][k] + rec[k][j];
                    rec[i][j] = max(rec[i][j], sum);
                }
            }
        }
        return rec[0][n + 1];
    }
};

提交oj

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值