安装arm架构的pytorch

本文介绍了如何在M1芯片的Mac上利用Miniforge替代Anaconda,以获取针对ARM架构优化的Python和PyTorch。通过切换到Miniforge并创建特定环境,然后安装PyTorch,实测结果显示性能提升了五到六倍。此外,文章还提及了在M1芯片上激活GPU进行计算的方法,进一步提升了处理速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

即使安装了m1芯片的anaconda,其python仍然是intel架构的,无法利用m1的优势,而pytorch针对arm架构做了优化,因此尝试使用arm下的pytorch
在这里插入图片描述

1、将base从anaconda切换到miniforge(arm架构的conda)

参考
conda→minforge: /Users/用户名/miniforge3/bin/conda init zsh
重启终端才能生效
在这里插入图片描述

2、创建一个虚拟环境

conda create -n m1py310 python=3.10
m1py310是虚拟环境的名字,根据自己的喜好来命名

3、激活环境,安装最新的arm架构pytorch

conda activate m1py310
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
在这里插入图片描述
实测速度提升了五到六倍!(基础的Unet
在这里插入图片描述
intel python:
在这里插入图片描述
arm python:
在这里插入图片描述
再试一下mac的GPU
在这里插入图片描述
PS:自从买了这个电脑,GPU一直没动过,今天终于动起来了,内心os:GPU起来干活!哈哈
调用方式:
device = torch.device("mps")
net.to(device)
在这里插入图片描述
对比:
(b,c,w,h)–>(2,1,512,512)

类别时间
intel cpu50
arm cpu11
arm gpu4
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值