pytorch框架班
文章平均质量分 83
天涯小才
这个作者很懒,什么都没留下…
展开
-
【深度之眼】【Pytorch打卡第6天】:学习网络层中的卷积层,池化层,全连接层和激活函数层
任务名称:学习网络层中的卷积层,池化层,全连接层和激活函数层 任务简介: 学习网络模型中采用的神经网络层,包括卷积层,池化层,全连接层和激活函数层,学会如何区分二维卷积和三维卷积; 详细说明: 本节第一部分学习卷积神经网络中最重要的卷积层,了解卷积操作的过程与步骤,同时学会区分一维/二维/三维卷积,最后学习转置卷积(Transpose Convolution)的由来以及实现方法; 本节第二部分学习池化层,全连接层和激活函数层,在池化层中有正常的最大值池化,均值池化,还有图像分割任务中常用的反池化——原创 2021-02-15 20:29:58 · 237 阅读 · 0 评论 -
【深度之眼】【Pytorch打卡第5天】:nn.Module与网络模型构建步骤;模型容器与AlexNet构建
任务简介:学习nn.Module类以及搭建网络模型步骤;熟悉搭建网络模型时常用的模型容器 详细说明: 本节第一部分介绍网络模型的基本类nn.Module,nn.Module是所有网络层的基本类,它拥有8个有序字典,用于管理模型属性,本节课中将要学习如何构建一个Module。 然后通过网络结构和计算图两个角度去观察搭建一个网络模型需要两个步骤:第一步,搭建子模块;第二步,拼接子模块。 本节第二部分介绍搭建网络模型常用的容器,如Sequential,ModuleList, ModuleDict,然后学习pyt原创 2021-02-15 19:23:17 · 193 阅读 · 0 评论 -
【深度之眼】【Pytorch打卡第4天】:各种transforms详解
图像增强 裁剪 transforms.CenterCrop transforms.RandomCrop 功能:从图片中随机裁剪出尺寸为size的图片 • size:所需裁剪图片尺寸 • padding:设置填充大小 当为a时,上下左右均填充a个像素 当为(a, b)时,上下填充b个像素,左右填充a个像素 当为(a, b, c, d)时,左,上,右,下分别填充a, b, c, d • pad_if_need:若图像小于设定size,则填充 • padding_mode:填充模式,有4种模式 1、con原创 2021-02-15 11:04:23 · 479 阅读 · 0 评论 -
【深度之眼】【Pytorch打卡第3天】:DataLoader、DataSet、Transforms+划分数据集代码、构建Dataset、读取数据
概括原创 2021-02-14 13:07:29 · 403 阅读 · 0 评论 -
【深度之眼】【Pytorch打卡第2天】:张量、计算图、线性回归、逻辑回归
一、张量的操作 拼接 torch.cat(): 将张量按维度dim进行拼接 torch.stack():在新建的维度dim上进行拼接 t = torch.ones((2, 3)) t_0 = torch.cat([t, t], dim=0) t_1 = torch.stack([t, t], dim=0) print(t_0) print(t_0.shape) print(t_1) print(t_1.shape) 输出: tensor([[1., 1., 1.], [1., 1.原创 2021-02-10 19:36:49 · 243 阅读 · 0 评论 -
【深度之眼】【Pytorch打卡第1天】:PyTorch简介及环境配置;PyTorch基础数据结构—张量
一、学习路径 二、安装 1)验证成功 >>> import torch >>> a=torch.ones(2,2) >>> a tensor([[1., 1.], [1., 1.]]) >>> 2)查看pytorch版本 print ("hello pytorch {}".format(torch.__version__)) 3)查看是否支持GPU print (torch.cuda.is_available原创 2021-02-10 12:18:37 · 251 阅读 · 0 评论