【深度之眼】【Pytorch打卡第2天】:张量、计算图、线性回归、逻辑回归

一、张量的操作

拼接

  • torch.cat(): 将张量按维度dim进行拼接
  • torch.stack():在新建的维度dim上进行拼接
t = torch.ones((2, 3))

t_0 = torch.cat([t, t], dim=0)
t_1 = torch.stack([t, t], dim=0)

print(t_0)
print(t_0.shape)
print(t_1)
print(t_1.shape)

输出:

tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])
torch.Size([4, 3])
tensor([[[1., 1., 1.],
         [1., 1., 1.]],

        [[1., 1., 1.],
         [1., 1., 1.]]])
torch.Size([2, 2, 3])

切分

  • torch.chunk(input, chunks, dim): 将张量按维度dim进行平均切分
t = torch.ones((2, 7))
print(t)

list_of_tensor = torch.chunk(t, dim=1, chunks=3)
print(list_of_tensor)

输出:

tensor([[1., 1., 1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1., 1., 1.]])
(tensor([[1., 1., 1.],
        [1., 1., 1.]]), tensor([[1., 1., 1.],
        [1., 1., 1.]]), tensor([[1.],
        [1.]]))
  • torch.split(): 将张量按维度dim进行切分
t = torch.ones((2, 7))
print(t)
list_of_tensor_2 = torch.split(t, 3, dim=1)
print(list_of_tensor_2)

list_of_tensor_3 = torch.split(t, [2, 2, 3], dim=1)
print(list_of_tensor_3)

输出:

tensor([[1., 1., 1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1., 1., 1.]])
(tensor([[1., 1., 1.],
        [1., 1., 1.]]), tensor([[1., 1., 1.],
        [1., 1., 1.]]), tensor([[1.],
        [1.]]))
(tensor([[1., 1.],
        [1., 1.]]), tensor([[1., 1.],
        [1., 1.]]), tensor([[1., 1., 1.],
        [1., 1., 1.]]))

索引

  • torch.index_select(): 在维度dim上,按index索引数据
t = torch.randint(0, 9, (3, 3))
print(t)

# index_select
idx=torch.tensor([0,2],dtype=torch.long)
t_index_select=torch.index_select(t,index=idx,dim=0)
print(t_index_select)

输出:

tensor([[8, 7, 5],
        [0, 0, 5],
        [1, 0, 7]])
tensor([[8, 7, 5],
        [1, 0, 7]])
  • torch.masked_select(): 按mask中的True进行索引, 返回一维张量。
t = torch.randint(0, 9, (3, 3))
print(t)

# masked_select
mask = t.ge(5) # ge means greater than or equal to,gt means greater than
print(mask)

t_masked_select = torch.masked_select(t, mask)
print(t_masked_select)

输出:

tensor([[0, 6, 8],
        [5, 2, 8],
        [2, 4, 5]])
tensor([[False,  True,  True],
        [ True, False,  True],
        [False, False,  True]])
tensor([6, 8, 5, 8, 5])

变换

  • torch.reshape: 变换张量形状
    notice: 注意事项:当张量在内存中是连续时,新张 量与input共享数据内存
# torch.reshape
t = torch.randperm(8)
print(t)
t_reshape = torch.reshape(t, (2, 4))  # -1代表不关心
print(t_reshape)

输出:

tensor([2, 1, 6, 4, 3, 7, 0, 5])
tensor([[2, 1, 6, 4],
        [3, 7, 0, 5]])
  • torch.transpose(): 交换张量的两个维度
# torch.transpose
t = torch.rand((2, 3, 4))
print(t)
t_transpose = torch.transpose(t, dim0=1, dim1=2)
print(t_transpose)

输出:

tensor([[[0.8289, 0.5771, 0.4477, 0.0689],
         [0.1176, 0.8692, 0.0684, 0.8340],
         [0.2765, 0.2561, 0.7809, 0.9669]],

        [[0.1702, 0.8590, 0.1033, 0.3139],
         [0.5455, 0.9026, 0.0666, 0.7125],
         [0.8124, 0.4118, 0.0077, 0.9554]]])
tensor([[[0.8289, 0.1176, 0.2765],
         [0.5771, 0.8692, 0.2561],
         [0.4477, 0.0684, 0.7809],
         [0.0689, 0.8340, 0.9669]],

        [[0.1702, 0.5455, 0.8124],
         [0.8590, 0.9026, 0.4118],
         [0.1033, 0.0666, 0.0077],
         [0.3139, 0.7125, 0.9554]]])
  • torch.t(): 2维张量转置,对矩阵而言,等价于 torch.transpose(input, 0, 1)

  • torch.squeeze(): 压缩长度为1的维度(轴)

# torch.squeeze
t=torch.rand((1,2,3,1))

t1=torch.squeeze(t)
print(t1.shape)

t2=torch.squeeze(t,dim=2)
print(t2.shape)

输出:

torch.Size([2, 3])
torch.Size([1, 2, 3, 1])
  • torch.unsqueeze(): 依据dim扩展维度

二、张量的数学运算

在这里插入图片描述

  • torch.add(): 逐元素计算 input+alpha×other
# torch.add
t0=torch.rand((3,3))
t1=torch.ones_like(t0)
print(t0)
print(t1)
t_add=torch.add(t0,10,t1)
print(t_add)

输出:

tensor([[0.9255, 0.6299, 0.0767],
        [0.4752, 0.1457, 0.6222],
        [0.1632, 0.7180, 0.2238]])
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])
tensor([[10.9255, 10.6299, 10.0767],
        [10.4752, 10.1457, 10.6222],
        [10.1632, 10.7180, 10.2238]])
  • torch.addcdiv()
  • torch.addcmul()

三、线性回归

import torch
import numpy as np
import matplotlib.pyplot as plt
torch.manual_seed(10)

lr = 0.1   # 学习率

# 创建训练数据
x = torch.rand(20, 1) * 10
# print(x)
y = 2 * x + (5 + torch.randn(20, 1))

# 构建回归参数
w = torch.randn(1, requires_grad=True)
b = torch.randn(1, requires_grad=True)

for iteration in range(1000):
    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()

    # 后向传播,得到梯度
    loss.backward()

    # 更新参数
    b.data.sub_(lr*b.grad)
    w.data.sub_(lr*w.grad)

    # 绘图
    if iteration%20==0:

        plt.scatter(x.data.numpy(),y.data.numpy())
        plt.plot(x.data.numpy(),y_pred.data.numpy(),'r-',lw=5)
        plt.text(2,20,'loss-%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'red'})
        plt.xlim(1.5,10)
        plt.ylim(8,28)
        plt.title('Iteration:{}\nw:{} b:{}'.format(iteration,w.data.numpy(),b.data.numpy()))
        plt.pause(0.5)

        if loss.data.numpy()<1:
            break
 

经过100次迭代后loss<1,循环结束。
在这里插入图片描述


四、计算图

叶子结点很重要

  • retain_grad(): 保留非叶子结点的梯度,防止被释放掉
  • is_leaf(): 查看是否为 叶子结点,返回:True / False
  • grad_fn: 记录创建该张量时所用的方法 (函数)
import torch
import numpy as np
import matplotlib.pyplot as plt

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)

y.backward()
print(w.grad)

# 查看叶子结点
print(a.is_leaf, b.is_leaf, w.is_leaf)

# 查看梯度
print(w.grad, x.grad, a.grad)

# 查看grad_fn
print(w.grad_fn, a.grad_fn)

返回值:

tensor([5.])
False False True
tensor([5.]) tensor([2.]) None
None <AddBackward0 object at 0x12204aed0>

五、动态图

在这里插入图片描述


六、Autograd

torch.autograd.backward: 自动求取梯度

  • tensors: 用于求导的张量,如 loss

  • retain_graph : 保存计算图

  • create_graph : 创建导数计算图,用于高阶求导

  • grad_tensors:多梯度权重

代码:

import torch
import numpy as np
import matplotlib.pyplot as plt

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)
b = torch.add(w, 1)
y0 = torch.mul(a, b)
y1 = torch.add(a, b)

loss = torch.cat([y0, y1], dim=0)
print(loss)

# 权重的设置
grad_tensors = torch.tensor([1., 1.])

loss.backward(gradient=grad_tensors)

print(w.grad)

结果:

tensor([6.], grad_fn=<MulBackward0>) tensor([5.], grad_fn=<AddBackward0>)
tensor([6., 5.], grad_fn=<CatBackward>)
tensor([7.])

Process finished with exit code 0

torch.autograd.grad: 求取梯度

  • outputs: 用于求导的张量,如 loss
  • inputs : 需要梯度的张量
  • create_graph : 创建导数计算图,用于高阶求导
  • retain_graph : 保存计算图
  • grad_outputs:多梯度权重
import torch
import numpy as np
import matplotlib.pyplot as plt

x = torch.tensor([3.], requires_grad=True)
y = torch.pow(x, 2)

# 一次求导
gard_1 = torch.autograd.grad(y, x, create_graph=True)  # res = 6
print(gard_1)

# 二次求导
grad_2 = torch.autograd.grad(gard_1[0], x)  # res = 2
print(grad_2)

结果:

(tensor([6.], grad_fn=<MulBackward0>),)
(tensor([2.]),)

autograd小贴士:

  1. 梯度不自动清零,会叠加
  2. 依赖于叶子结点的结点,requires_grad默认为True
  3. 叶子结点不可执行in-place

可以用w.grad.zero_()清零梯度(’_’表示原位操作)

import torch

a = torch.ones((1,))
print(id(a), a)

# a=a+torch.ones((1,))   # 开辟新的内存地址
# print(id(a),a)

a += torch.ones((1,))    # 原位操作
print(id(a), a)

结果:

2093022703432 tensor([1.])
2093022703432 tensor([2.])

七、逻辑回归

在这里插入图片描述

机器学习的五大步:

  • 数据
  • 模型
  • 损失函数
  • 优化器
  • 迭代训练
import torch
import torch.nn as nn

import numpy as np
import matplotlib.pyplot as plt

torch.manual_seed(10)

# ********************** step 1/5: 生成数据 **********************
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)  # dim = 100x2

x0 = torch.normal(mean_value * n_data, 1) + bias  # 类别0 数据 shape=(100,2)
y0 = torch.zeros(sample_nums)                     # 类别0 标签 shape=(100,1)

x1 = torch.normal(-mean_value * n_data, 1) + bias # 类别1 数据 shape=(100,2)
y1 = torch.ones(sample_nums)                      # 类别2 标签 shape=(100,1)

train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# ********************** step 2/5: 选择模型 **********************


class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x

# 实例化逻辑回归模型
lr_net = LR()

# ********************** step 3/5: 选择损失函数 **********************
loss_fn = nn.BCELoss()

# ********************** step 4/5: 选择优化器 **********************
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

# ********************** step 5/5:模型训练 **********************

for iteration in range(1000):
    # 向前传播
    y_pred = lr_net(train_x)

    # 计算loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()

    # 绘图
    if iteration % 20 == 0:
        # 以0.5为阈值进行分类
        mask = y_pred.ge(0.5).float().squeeze()

        # 计算正确预测的样本数
        correct = (mask == train_y).sum()

        # 计算准确率
        acc = correct.item() / train_y.size(0)
        plt.scatter(x0.data.numpy()[:,0],x0.data.numpy()[:,1],c='r',label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0,w1=lr_net.features.weight[0]
        w0,w1=float(w0.item()),float(w1.item())
        plot_b=float(lr_net.features.bias[0].item())
        plot_x=np.arange(-6,6,0.1)
        plot_y=(-w0*plot_x-plot_b)/w1

        plt.xlim(-5,7)
        plt.ylim(-7,7)
        plt.plot(plot_x,plot_y)

        plt.text(-5,5,'loss=%.4f'%loss.data.numpy(),fontdict={'size':20,'color':'red'})
        plt.title('Iteration:{}\nw0:{:.2f} w1:{:.2f} b:{:.2f} accuracy:{:.2f}'.format(iteration,w0,w1,plot_b,acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc>0.99:
            break

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天涯小才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值