题目描述
卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。
当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n = 3 n=3 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n = 5 、 8 、 4 、 2 n=5、8、4、2 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3 “覆盖”的数。我们称一个数列中的某个数 n n n 为“关键数”,如果 n n n 不能被数列中的其他数字所覆盖。
现在给定一系列待验证的数字,我们只需要验证其中的几个关键数,就可以不必再重复验证余下的数字。你的任务就是找出这些关键数字,并按从大到小的顺序输出它们。
输入格式
每个测试输入包含 1 个测试用例,第 1 行给出一个正整数 K ( K < 100 ) K (K<100) K(K<100) ,第 2 行给出 K K K 个互不相同的待验证的正整数 n ( 1 < n ≤ 100 ) n (1<n\leq 100) n(1<n≤100)的值,数字间用空格隔开。
输出格式
每个测试用例的输出占一行,按从大到小的顺序输出关键数字。数字间用 1 个空格隔开,但一行中最后一个数字后没有空格。
样例
输入样例
6
3 5 6 7 8 11
输出样例
7 6
思路
建立两个表,一个用于判断路径是否存在,一个用于储存路径起点,对每个输入的数,先在判断路径是否存在,如不存在,则该数存入路径起点,对数进行运算,并更新路径表,同时判断路径起点有没有运算后的数,有则把该数删除。输出存在的路径起点即可。
参考代码
#include <bits/stdc++.h>
using namespace std;
bool cmp(int a, int b) {
return a > b;
}
int main(void) {
array<bool, 10000> map = {};
array<bool, 200> exi = {};
vector<int> vt;
int t, input;
cin >> t;
for (int i = 0; i < t; i++) {
cin >> input;
if (!map[input]) {
exi[input] = true;
}
while (input != 1) {
if (input % 2) {
input = (input * 3 + 1) / 2;
if (exi[input]) {
exi[input] = false;
}
map[input] = true;
} else {
input /= 2;
if (exi[input]) {
exi[input] = false;
}
map[input] = true;
}
}
}
for (int i = 0; i < exi.size(); i++) {
if (exi[i]) {
vt.push_back(i);
}
}
sort(vt.begin(), vt.begin() + vt.size(), cmp);
for (int i = 0; i < vt.size(); i++) {
if (i == vt.size() - 1) {
cout << vt[i];
} else {
cout << vt[i] << " ";
}
}
return 0;
}
这篇博客探讨了卡拉兹猜想,并介绍了如何找出验证过程中避免重复计算的关键数。通过建立表格跟踪数列路径,避免重复验证,重点在于找出并按降序排列这些关键数。
212

被折叠的 条评论
为什么被折叠?



