PyTorch深度学习入门
文章平均质量分 86
PyTorch深度学习入门
紫芝
你可不可以成为我的main函数,做我此生有且仅有一个入口;我愿为自己加上private,在你的class中只有你能调用。
展开
-
深度学习入门之PyTorch学习笔记
深度学习入门之PyTorch学习笔记绪论绪论深度学习如今已经称为科技领域最炙手可热的技术,帮助你入门深度学习。本文从机器学习与深度学习原创 2020-08-01 17:17:38 · 562 阅读 · 0 评论 -
Pytorch的网络结构可视化:Netron与TensorBoardX
原文地址:https://blog.csdn.net/xiaoxifei/article/details/82735355最近刚刚发现一个非常好用的显示模型神器Netronhttps://github.com/lutzroeder/Netronhttps://www.electronjs.org/apps/netron借助这个工具可以像windows的软件一样导入已经训练好的模型加权重即可一键生成以下是我的一个模型使用该工具可视化结果,只不过目前该工具对于onnx支持非常好,但是pytorch权重原创 2021-05-13 15:02:54 · 728 阅读 · 2 评论 -
PyTorch数据归一化处理:transforms.Normalize及计算图像数据集的均值和方差
计算图像数据集的均值和方差1.使用PyTorch计算图像数据集的均值和方差(推荐)2.使用opencv和numpy计算图像数据集的均值和方差3.计算某个目录下所有图片的均值和方差参考资料1.使用PyTorch计算图像数据集的均值和方差(推荐)Pytorch图像预处理时,通常使用transforms.Normalize(mean, std)对图像按通道进行标准化,即减去均值,再除以方差。这样做可以加快模型的收敛速度。其中参数mean和std分别表示图像每个通道的均值和方差序列。Imagenet数据集的均原创 2021-05-10 16:51:25 · 46591 阅读 · 30 评论 -
卷积神经网络训练的三个概念(Epoch,Batch,Iteration)
总结下训练神经网络中最最基础的三个概念:Epoch(训练多少轮), Batch(每次输入网络样本的个数), Iteration(迭代次数)。1.名词解释名词定义Epoch使用训练集的全部数据,对模型进行一次完整训练,称之为“一代训练”Batch使用训练集中的一小部分样本,对模型权重进行一次反向传播的参数更新,这一小部分样本被称为“一批数据”Iteration使用一个Batch数据,对模型进行一次参数更新的过程,称之为“一次训练”epoch:训练时,所有训练转载 2021-05-09 17:04:23 · 6953 阅读 · 0 评论 -
深度学习入门之线性模型和梯度下降
线性模型和梯度下降这是神经网络的第一课,我们会学习一个非常简单的模型,线性回归,同时也会学习一个优化算法-梯度下降法,对这个模型进行优化。线性回归是监督学习里面一个非常简单的模型,同时梯度下降也是深度学习中应用最广的优化算法,我们将从这里开始我们的深度学习之旅。一元线性回归一元线性模型非常简单,假设我们有变量 xix_ixi 和目标 yiy_iyi,每个 i 对应于一个数据点,希望建立一个模型y^i=wxi+b\hat{y}_i = w x_i + by^i=wxi+by^i\hat原创 2020-09-05 16:24:56 · 490 阅读 · 0 评论 -
深度学习入门之PyTorch学习笔记:卷积神经网络
深度学习入门之PyTorch学习笔记绪论1 深度学习介绍2 深度学习框架3 多层全连接网络4 卷积神经网络4.1 主要任务及起源4.2 卷积神经网络的原理和结构4.2.1 卷积层1.概述绪论深度学习如今已经称为科技领域最炙手可热的技术,帮助你入门深度学习。本文从机器学习与深度学习的基础理论入手,从零开始学习PyTorch以及如何使用PyTorch搭建模型。学习机器学习中的线性回归、Logistic回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络、以及生成对抗网络,最后通过实原创 2020-08-09 20:57:48 · 1443 阅读 · 0 评论 -
基于PyTorch框架的多层全连接神经网络实现MNIST手写数字分类
多层全连接神经网络实现MNIST手写数字分类1 简单的三层全连接神经网络先用PyTorch实现最简单的三层全连接神经网络,然后添加激活层查看实验结果,最后再加上批标准化验证是否能够更加有效。1 简单的三层全连接神经网络...原创 2020-08-06 14:42:52 · 2791 阅读 · 2 评论 -
通俗讲解多层全连接前向网络的基本结构
通俗讲解多层全连接前向网络的基本结构1 模拟神经元2 单层神经网络的分类器3 激活函数4 神经网络的结构5 模型的表示能力和容量1 模拟神经元神经网络最开始是受到了模拟脑神经元的启发,但是现在已经发展成了机器学习中的一个重要算法。脑中的一个计算单元是一个简单的脑神经元,在人脑的神经系统中,大约有8.6*10^10个神经元,他们被10^14~10^15个突触相连。脑神经元与神经网络的相似之处。脑神经元收到一个输入的信号,通过不同的突触,信号进入神经元,接着通过神经元内部的激活处理,最后沿着神经元原创 2020-08-05 15:17:52 · 4915 阅读 · 0 评论 -
一篇文章入门深度学习框架PyTorch
一篇文章入门深度学习框架PyTorch1 Tensor(张量)2 Variable(变量)3 Dataset(数据集)4 nn.Module(模组)5 torch.optim(优化)一阶优化算法二阶优化算法6 模型的保存和加载1 Tensor(张量)PyTorch里面处理的最基本的操作对象就是Tensor,Tensor表示的是一个多维矩阵,比如零维就是一个点,一维就是向量,二维就是一般的矩阵,多维就相当于一个多维数组Tensor和Numpy是对应的,可以和Numpy的ndarray互相转换,唯一不同原创 2020-08-04 20:18:38 · 456 阅读 · 0 评论 -
基于Anaconda安装GPU版PyTorch深度学习开发环境
基于Anaconda安装GPU版PyTorch深度学习开发环境1 安装Anaconda2 安装GPU计算驱动2.1 检查是否有合适的GPU2.2 下载CUDA和cuDNN2.3 安装CUDA和cuDNN3 安装GPU版PyTorch3.1 准备工作3.2 安装CUDA3.3 安装cuDNN3.4 安装Pytorch4 测试GPU版PyTorch深度学习开发环境1 安装Anacondahttps://hulin.blog.csdn.net/article/details/1069544492 安装GPU原创 2020-08-03 15:51:31 · 3745 阅读 · 2 评论 -
深度学习入门之PyTorch学习笔记:多层全连接网络
深度学习入门之PyTorch学习笔记绪论1 深度学习介绍2 深度学习框架3 多层全连接网络4 卷积神经网络5 循环神经网络6 生成对抗网络7 深度学习实战绪论深度学习如今已经称为科技领域最炙手可热的技术,帮助你入门深度学习。本文从机器学习与深度学习的基础理论入手,从零开始学习PyTorch以及如何使用PyTorch搭建模型。学习机器学习中的线性回归、Logistic回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络、以及生成对抗网络,最后通过实战了解深度学习前沿的研究成果。原创 2020-08-05 20:57:51 · 1953 阅读 · 0 评论 -
深度学习入门之PyTorch学习笔记:深度学习框架
深度学习入门之PyTorch学习笔记绪论1 深度学习介绍2 深度学习框架2.1 深度学习框架介绍2.1.1 TensorFlow2.1.2 Caffe2.1.3 Theano2.1.4 Torch2.1.5 MXNet2.2 PyTorch介绍2.2.1 什么是PyTorch2.2.2 为何要使用PyTorch绪论深度学习如今已经称为科技领域最炙手可热的技术,帮助你入门深度学习。本文从机器学习与深度学习的基础理论入手,从零开始学习PyTorch以及如何使用PyTorch搭建模型。学习机器学习中的线原创 2020-08-03 09:47:43 · 1283 阅读 · 0 评论 -
深度学习入门之PyTorch学习笔记:深度学习介绍
深度学习入门之PyTorch学习笔记:深度学习介绍绪论1 深度学习介绍1.1 人工智能2 深度学习框架3 多层全连接网络4 卷积神经网络5 循环神经网络6 生成对抗网络7 深度学习实战绪论深度学习如今已经称为科技领域最炙手可热的技术,帮助你入门深度学习。本文从机器学习与深度学习的基础理论入手,从零开始学习PyTorch以及如何使用PyTorch搭建模型。学习机器学习中的线性回归、Logistic回归、深度学习的优化方法、多层全连接神经网络、卷积神经网络、循环神经网络、以及生成对抗网络,最后通过实战原创 2020-08-02 15:58:40 · 760 阅读 · 0 评论