基于PCA方法的ORL人脸识别及Python代码实现

基于PCA方法的ORL人脸识别及Python代码实现

PCA的理论知识已经有很多博客做了清晰的解释,主要概括为找到投影的面使得类间误差最大,转化为找到构建的协方差的特征值与特征向量,在新的投影方向(特征向量)上投影,构建数据库和待检索的人脸进行比对,得到相似度最高的人脸作为查询结果,本文使用ORL人脸数据库基于PCA方法实现人脸识别。

机器学习理论《统计学习方法》学习笔记:主成分分析(PCA)

本文所用的是ORL人脸库,由英国剑桥实验室拍摄,共有40人,每人不同角度不同表情拍摄了10张,所以共有400个样本数据,图片尺寸为112*92,格式为pgm。本文将每人的前5张作为训练集,后5张作为测试集。ORL人脸库可在该网址下载。

https://download.csdn.net/download/qq_40507857/13714311

PCA算法

设有m条n维数据:
(1)将原始数据按列组成n行m列矩阵X
(2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值
(3)求出协方差矩阵
(4)求出协方差矩阵的特征值及对应的特征向量
(5)将特征向量按对应特征值大小从上到下按行进行排列成矩阵,取前k行组成矩阵P
(6)Y=PX即为降维到K维后的数据

方案设计

  1. 将ORL人脸数据库的40位志愿者的10张图片,使用10折交叉验证。每个人依次取出一张作为验证数据,进行10轮验证,最后得到准确率的均值。对于每次运算,训练集大小为360张图片,验证集大小为40张图片。对于每张图片,将其展开为一维向量 X i X_i Xi;即训练集 X = X 1 , X 2 , ⋯   , X 3 60 X=X_1,X_2,\cdots,X_360 X=X1,X2,,X360,维度为(10304,400).
  2. 求X每行的均值向量u,并将其与X相减,进行零均值化,得到 C = ( X 1 − u , X 2 − u , ⋯   , X 3 60 − u ) C=(X_1-u,X_2-u,\cdots,X_360-u) C=(X1u,X2u,,X360u);
  3. 构建协方差矩阵 C C T CC^T CCT
  4. 求解协方差矩阵的特征值,选取最大的K个,求出对应的K个特征向量,并将其按列排成变换矩阵P,其维度为(10304*K);
  5. 计算训练集的图片在上述特征向量下的投影,即为 Y i = P T ( X i − u ) Y_i=P^T(X_i-u) Yi=PT(Xiu),作为查找集;
  6. 将待识别的图片做以上相同投影运算得到Z;
  7. 遍历搜索查找集,满足 m i n ∣ ∣ Y i − Z ∣ ∣ min||Y_i-Z|| minYiZ条件的,即待识别图片与 Y i Y_i Yi对应图片属于一类,即找到待识别照片的主人。

其中,构建的协方差矩阵 C C T CC^T CCT进行特征值与特征向量求解时非常耗时,所以构造 C T C C^TC CTC进行特征值和特征向量的求取,最后通过将求得的特征向量左乘C,即可得到 C T C C^TC CTC的特征向量。

代码实现

import cv2
import numpy as np
import glob

# 预处理 构建数据矩阵
images = glob.glob(r'.\ORL\*.bmp')
X = []
for img in images:
    img = cv2.imread(img, 0)
    temp = np.resize(img, (img.shape[0] * img.shape[1], 1))
    X.append(temp.T)
X = np.array(X).squeeze().T
print(X.shape, X.shape[1])  # (10304, 400) 400

# 10轮
correct_sum = 0
for epoch in range(10):
    # 10折交叉验证  数据划分
    train_data = X[:, [x for x in list(range(X.shape[1])) if x not in list(range(epoch, X.shape[1], 10))]]
    test_data = X[:, list(range(epoch, X.shape[1], 10))]

    # train
    u = np.sum(train_data, axis=1) / train_data.shape[1]  # 求均值向量

    # 平均脸
    # u = np.array(u, dtype='uint8')
    # average_face = np.resize(u, (img.shape[0], img.shape[1]))
    # cv2.imwrite('Average_Face.png', average_face)

    u = u[:, np.newaxis]
    C = train_data - u  # 中心化后数据矩阵
    Covariance = np.dot(C.T, C)  # 构建协方差矩阵,一般为C .* C.T,但是构造这种类型可减少运算量
    eigvalue, eigvector = np.linalg.eig(Covariance)  # 由协方差矩阵求解特征值、特征向量
    real_eigvector = np.dot(C, eigvector)  # 通过之前的构造来恢复真正协方差矩阵对应的特征向量
    sort = np.argsort(-eigvalue)  # 将特征值从大到小怕排序,得到排序后对于原索引
    P = real_eigvector.T[sort[0:100]]  # 对于排序构造特征向量,取前面较大权重值
    Y = []
    for i in range(train_data.shape[1]):
        temp = train_data[:, i, np.newaxis]
        Y.append(np.dot(P, temp - u))  # 构建每幅图像投影后的值,构造查找表

    # test
    correct = 0
    for index in range(test_data.shape[1]):
        img_test = test_data[:, index, np.newaxis]  # 从测试集提取单张人脸
        Result = np.dot(P, img_test - u)  # 计算待识别的人脸的投影
        a = np.sum(abs(Y - Result), axis=1).argmin()  # 遍历搜索匹配
        if index * 9 <= a < (index + 1) * 9:  # 若索引在宽度为9的区间内则为该人脸,视为匹配正确
            correct += 1
    print('Epoch{} correct rate: {}%'.format(epoch, correct / 40 * 100))
    correct_sum += correct

print('Final  correct rate: {}%'.format(correct_sum / 4))

  • 平均脸

在这里插入图片描述

  • 运行结果
    在这里插入图片描述

结果分析

通过10折交叉验证,最后得到的准确度为97.75%,即通过少量样本可以得到较好的结果,说明PCA在降维上拥有很好的效果,较好的保留了主要特征。

参考文献

  1. https://blog.csdn.net/qq_24946843/article/details/81775701
  2. https://blog.csdn.net/Big_Huang/article/details/103830082
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值