一、总述
文章提出了一种针对弱损伤和不明显特征的故障检测网络(该论文代码GitHub - 781458112/DWWA),属于机器视觉目标检测领域。具体的模型框架如下图:
框架中DWCNet为动态可变权值的小波卷积网络,用于特征的提取和降噪;中间部分为两层金字塔层级的特征提取和特征融合模块。第二层的输入来自动态反馈后的第一层输出,第二层的最终输出类似于残差网络的跳跃连接方式实现。其中动态反馈部分和特征提取部分的Multiview attention models在文中经验证具有和高效的特征增强的效果:原文表述如下As shown in Table V, DWCNet, feedback network, and attention can improve the detection effect of defects, and the proposed attention network has a crucial impact on the performance of the network.
二、模型框架具体解读
算法伪代码如下
1.DWCNet
(1)小波神经网络
文中此部分将小波神经网络和卷积结合,离散小波变换的信号表达式如下:
(补充:小波神经网络将小波基替换掉原来的非线性激活函数sigmoid,以下图片资源来自网络,小波变换的介绍链接参考:小波变换(DWT),短时傅里叶分析(STFT),与快速傅里叶(FFT)之间的关系_短时傅里叶变换和快速傅里叶变换-CSDN博客知识总结 | 小波变换 (qq.com))
其中小波函数和尺度方程为 ,系数d,a可由信号和h,g滤波函数卷积计算得到:
(2)DWCNet网络
DWCNet由三部分组成如图:
Fb()是权重分配网络用于给Fa(Fa()是卷积网络,跟着的小波变换用于将高频噪声滤除),和Fc(小波卷积神经网络,对高频和低频即全频段特征提取)分配权重。文中指出由于小波卷积的优势在一开始Fc的权重将会设置为1,而Fa权重设置为0.
At the beginning of the network training, the Fc(·) can select the appropriate wavelet basis function to extract features more effectively than using Fa(·) with random initialization for feature extraction. Therefore, at the beginning of the network training, we can give higher weights to the Fc(·) by the Fb(·). Based on the above analysis, the weight of λ is set to 0, which can be achieved through the weight distribution module Fb(·). Then, with the iterative training of the network, the network will learn the weight parameters by Fb(·), such that the network will choose the weight adaptively.
2.Multiview Attention Module
文章选择用的为可变形的卷积网络(deformable convolution),这里采用了三种不同大小的卷积核,每一个卷积后面使用不同的注意力模块A、B、C.
A、B、C注意力模块的结构如下图:参考SE,squeeze-and-excitation networks,即将特征图拉直为1x1xC(C为通道数)特征向量再对每个通道分配权重(SE压缩和激励网络_squeeze-and-excitation networks-CSDN博客)
3.Dynamic Feedback Module
(1)feature fusion上采样加上一层的NN结构(wx+b)输出
(2)feature weight model如上右图所示,对本层和下一层上采样后的特征图赋予不同的权重。文中以y4和y5为例子,其融合的表达式如下
三、实验结果对比
与YOLO V7(当时最高精度的目标检测构架)对比优势明显