文科生的悲哀
-
总时间限制:
- 1000ms 内存限制:
- 65536kB
-
描述
在这一学期一共有n次文科考试,考试科目有4种,分别为政治、历史、地理和综合。每次考哪一科是不定的,因此在考试前Matrix67不知道应该 去复习哪一科的功课。他希望能预测出下一次可能考的科目。于是,他收集到了以往的文科考试的资料。从以往的考试中,他发现了这样几个规律:
1.如果这次考的是政治,那么下一次一定会考历史;
2.如果这次考的是综合,那么下一次一定会考地理;
3.如果这次考的是历史,那么下一次要么考政治,要么考地理;
4.如果这次考的是地理,那么下一次要么考历史,要么考综合。
Matrix67已经知道,本学期的第一次考试科目为政治。他打算拟定一个可以应对所有可能情况的应考复习计划。因此,他想知道,整个学期有多少种可能的考试科目安排满足以上规律。你能帮他算出来吗?输入一个正整数n,代表本学期总的考试次数。
输入数据保证n<=10000。输出一个正整数,表示符合规律的科目安排方案的总数。
考虑到这个结果可能会很大,因此你只需要输出它mod 7654321的值即可。样例输入
5样例输出
5
思路: 将政治,综合设为1(下一步只通往一门学科),同理将历史,地理设为2;
画个树图:
1 //1层
|
2 //2层
/ \
1 2 //3层
/ / \
2 1 2 //4层
/ \ | / \
1 2 2 1 2 //5层
设第i层(i>2)数字2的个数为a[i];
看第i+1层(i>2)数字1的个数,层数每增1,上层的2将转化为1,2
所以第i+1层1的个数为上层2的个数(即a[i]);
看第i+1层(i>2)数字2的个数,我把它分成两块:
第1块:层数每增1,上层的2将转化为1,2,由此产生的2的个数为a[i];
第2块:层数每增1,上层的1将全部转化成2,由此产生的2的个数为a[i-1];
两块加起来则第i+1层2的个数为a[i+1]=a[i]+a[i-1];
代码实现:先求1的个数,再求2的个数,最后相加;
其中,a[1]=0,a[2]=1(由上图可知);
PS:此题也可以用斐波那契数列来做
代码实现:
两块加起来则第i+1层2的个数为a[i+1]=a[i]+a[i-1];
代码实现:先求1的个数,再求2的个数,最后相加;
其中,a[1]=0,a[2]=1(由上图可知);
PS:此题也可以用斐波那契数列来做
代码实现:
#include<iostream>
using namespace std;
int a[10005];
int solve(int n)
{
if(a[n]) return a[n];
if(n==0) return a[n]=1; //注意:不可省略!!!
if(n==1) return a[n]=0; //因为后面调用solve(n-1)时,n-1可能等于0;
if(n==2) return a[n]=1;
return a[n]=(solve(n-1)+solve(n-2))%7654321;
}
int main()
{
int n;
cin>>n;
cout<<(solve(n)+solve(n-1))%7654321<<endl; //solve(n)代表2的个数,
return 0; //solve(n-1)代表1的个数;
}
//纯手打,打了接近2个小时,请珍惜这份代码