数塔

 

Problem Description

在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:

有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?

已经告诉你了,这是个DP的题目,你能AC吗?

 

 

Input

输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。

 

 

Output

对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。

 

 

Sample Input

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

 

 30

思路:声明一个二维数组dp,用来保存数塔各层的值,然后我从上往下走,可得dp[i][j] += max(dp[i-1][j],dp[i-1][j-1])

然后求dp[n][i]中的最大值,当然你也可以从下往上。我们可以从局部最优到整体最优的思路,假设我们位于(1,1)(起始点),我们只有从(1,0)和(0,0)才能走到(1,1),类比,当我们在(2,1)我们只能从(1,0)和(1,1)两点中得到最大点,然后再走到(2,1),这样从局部就已经是最优了。

#include<iostream>
#include<cstdio>
#include<cstring> 
#include<map>
#include<set>
#include<cmath>
#include<algorithm>
using namespace std;

int a[105][105];
int dp[105][105];

int main()
{
	
    int t;
    int n;
	scanf("%d",&t);
	for(int i = 0;i < t;++i)
	{
		scanf("%d",&n);
		memset(dp,0,sizeof(dp));
		//memset(a,0,sizeof(a));
		
		for(int j = 1;j <= n;++j)
		{
			for(int k = 1;k <= j;++k)
			{
				scanf("%d",&dp[j][k]);
			}
		}
		
		for(int j = 1;j <= n;++j)
		{
			for(int k = 1;k <= j;++k)
			{
				dp[j][k] += max(dp[j-1][k],dp[j-1][k-1]);	
			}
		}
		
		int ans = 0;
		for(int i = 1;i <= n;++i)
		   if(dp[n][i] > ans)
		      ans = dp[n][i];
		cout << ans << endl;
	} 
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值