Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
30
思路:声明一个二维数组dp,用来保存数塔各层的值,然后我从上往下走,可得dp[i][j] += max(dp[i-1][j],dp[i-1][j-1])
然后求dp[n][i]中的最大值,当然你也可以从下往上。我们可以从局部最优到整体最优的思路,假设我们位于(1,1)(起始点),我们只有从(1,0)和(0,0)才能走到(1,1),类比,当我们在(2,1)我们只能从(1,0)和(1,1)两点中得到最大点,然后再走到(2,1),这样从局部就已经是最优了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<set>
#include<cmath>
#include<algorithm>
using namespace std;
int a[105][105];
int dp[105][105];
int main()
{
int t;
int n;
scanf("%d",&t);
for(int i = 0;i < t;++i)
{
scanf("%d",&n);
memset(dp,0,sizeof(dp));
//memset(a,0,sizeof(a));
for(int j = 1;j <= n;++j)
{
for(int k = 1;k <= j;++k)
{
scanf("%d",&dp[j][k]);
}
}
for(int j = 1;j <= n;++j)
{
for(int k = 1;k <= j;++k)
{
dp[j][k] += max(dp[j-1][k],dp[j-1][k-1]);
}
}
int ans = 0;
for(int i = 1;i <= n;++i)
if(dp[n][i] > ans)
ans = dp[n][i];
cout << ans << endl;
}
return 0;
}