题目描述
经过数月的精心准备,Peer Brelstet,一个出了名的盗画者,准备开始他的下一个行动。艺术馆的结构,每条走廊要么分叉为两条走廊,要么通向一个展览室。Peer知道每个展室里藏画的数量,并且他精确测量了通过每条走廊的时间。由于经验老到,他拿下一幅画需要5秒的时间。你的任务是编一个程序,计算在警察赶来之前,他最多能偷到多少幅画。
输入输出格式
输入格式:
第1行是警察赶到的时间,以s为单位。第2行描述了艺术馆的结构,是一串非负整数,成对地出现:每一对的第一个数是走过一条走廊的时间,第2个数是它末端的藏画数量;如果第2个数是0,那么说明这条走廊分叉为两条另外的走廊。数据按照深度优先的次序给出,请看样例。
一个展室最多有20幅画。通过每个走廊的时间不超过20s。艺术馆最多有100个展室。警察赶到的时间在10min以内。
输出格式:
输出偷到的画的数量。
还是直接把我在洛谷发的题解复制过来了。
这题很有趣啊,一拿到题看输入格式是深搜顺序,和别的题不一样,这里我们可以递归调用来加边输入。我拿到这道题觉得j表示拿几幅画比较好转移。。于是我就尝试用dp(i,j)表示i为节点拿j副画所用最短时间。看题解里全是dp i,j表示的剩余时间。。我就发一下这篇题解。代码里有注释,看不懂的地方可以私信。
#include<bits/stdc++.h>
#define lson (o<<1)
#define rson (o<<1|1)
using namespace std;
const int MAXN=1e4+3;
const int MINN=1e3+3;
struct edge{
int to,next,w;
}e[MAXN<<1];
int head[MAXN],cnt=0;
inline void add(int u,int v,int w){e[++cnt]=(edge){v,head[u],w},head[u]=cnt;}
int times,tem1,tem2,w[MINN],dp[MINN][MINN],lw[MINN],rw[MINN],ans=0;//w为以u节点为根不限时拿最多画的数量 lw左子树边权 右子树边权。
bool haveson[MAXN];
void init(int o,int fa){
scanf("%d%d",&tem1,&tem2);
if(!tem2){
add(fa,o,tem1);
init(lson,o);
init(rson,o);
}
else {
add(fa,o,tem1);
w[o]=tem2;
}
}
//dp[u][j]=min(dp[lson][k]+dp[rson][j-k]+2*(e.w1+e.w2),dp[u][j])); if(k==0)- if(k==j)- 这是写的时候的草稿
// if u->don't have son dp[u][1]=5; dp[u][2]=10;
void dfs1(int o){
for(int i=head[o];i;i=e[i].next){
int v=e[i].to;
if(v==lson)lw[o]=e[i].w;
if(v==rson)rw[o]=e[i].w;
if(!haveson[o])haveson[o]=1;
dfs1(v);
if(haveson[o])w[o]+=w[v];
}
if(!haveson[o])for(int i=0;i<=w[o];i++)dp[o][i]=5*i;
}
void dfs2(int o){
for(int i=head[o];i;i=e[i].next){
int v=e[i].to;
dfs2(v);
if(o!=0){
for(int j=0;j<=w[o];j++){
for(int k=0;k<=j;k++){
if(k>w[lson]||j-k>w[rson])continue;//很关键,不合法的情况要排除掉。
int tem3=dp[lson][k]+dp[rson][j-k]+((lw[o]+rw[o])<<1);
if(k==0)tem3-=(lw[o]<<1);
if(k==j)tem3-=(rw[o]<<1);
dp[o][j]=min(tem3,dp[o][j]);
}
}
}
else for(int j=0;j<=w[o];j++)dp[o][j]=dp[rson][j]+(rw[o]<<1);
}
}
void mem(){
memset(haveson,0,sizeof(haveson));
memset(dp,0x7f,sizeof(dp));
memset(w,0,sizeof(w));
}
int main(){
mem();
scanf("%d",×);
init(1,0);
dfs1(0);
dfs2(0);
for(int i=1;i<=w[0];i++){
if(dp[0][i]<times)ans++;
else break;
}
printf("%d\n",ans);
return 0;
}