访问艺术馆(codevs 1163)树形DP

题目描述 Description

    皮尔是一个出了名的盗画者,他经过数月的精心准备,打算到艺术馆盗画。艺术馆的结构,每条走廊要么分叉为二条走廊,要么通向一个展览室。皮尔知道每个展室里藏画的数量,并且他精确地测量了通过每条走廊的时间,由于经验老道,他拿下一副画需要5秒的时间。你的任务是设计一个程序,计算在警察赶来之前(警察到达时皮尔回到了入口也算),他最多能偷到多少幅画。

输入描述 Input Description

第1行是警察赶到得时间,以s为单位。第2行描述了艺术馆得结构,是一串非负整数,成对地出现:每一对得第一个数是走过一条走廊得时间,第2个数是它末端得藏画数量;如果第2个数是0,那么说明这条走廊分叉为两条另外得走廊。数据按照深度优先得次序给出,请看样例

输出描述 Output Description

输出偷到得画得数量

样例输入 Sample Input

60

7 0 8 0 3 1 14 2 10 0 12 4 6 2

样例输出 Sample Output

2

数据范围及提示 Data Size & Hint

s<=600

走廊的数目<=100


错觉吗?感觉树形的DP更好理解

 

解析:

题目很贴心的让我们以深搜的顺序输入,定义 ut 为到当前节点 cur 所花费的时间,由于偷完还要溜掉,要走一个来回,所以 ut*2,我们用 f[i][j] 表示 到 i 节点花费 j 时间能偷走的画

当往下走的时候,要么是二岔路,要么就到达画室。

如果是画室,我们到达画室看还剩余的时间 tot-ut ,从这个时间到 tot 就是你自由的时间(偷东西……溜),因为每偷一幅画需要 5 分钟,而最多可偷 sf ,我们就取一个最小值,即 f[cur][i] =min( (i-ut)/5 , sf)

如果是二岔路,左右都走完后更新该父节点,还是在自由的时间内(tot-ut)得到最优结果

 

代码如下

#include<stdio.h>
#include<algorithm>
using namespace std;
int tot,cnt,f[110][610];

void dfs()
{
    int cur=++cnt;
    int ut,sf;
    scanf("%d%d",&ut,&sf);
    ut*=2;
    if(sf) {
        for(int i=ut;i<=tot;++i)
            f[cur][i]=min((i-ut)/5,sf);
    }
    else {
        int l=cnt+1;dfs();
        int r=cnt+1;dfs();
        for(int i=ut;i<=tot;++i)
            for(int j=0;j<=i-ut;++j) {
                f[cur][i]=max(f[cur][i],f[l][j]+f[r][i-ut-j]);
            }
    }
} 

int main()
{
    scanf("%d",&tot);
    dfs();
    printf("%d",f[1][tot]);
    return 0;
}

 

学长哒(注释是我的,因为之前没理解)

#include<cstdio>
#include<algorithm>
using namespace std;
int xd,cnt,f[105][601];
void dfs()
{
    int b=++cnt,ut,sf;
    scanf("%d%d",&ut,&sf);
    ut<<=1;
    if(sf)
        for(int i=ut;i<=xd;i++)
            f[b][i]=min((i-ut)/5,sf);//到 b 节点用时 i 得到的画
    else
    {
        int l=cnt+1;
        dfs();//左边深搜 
        int r=cnt+1;
        dfs();//右边深搜 
        
        for(int i=ut;i<=xd;i++)  
            for(int j=0;j<=i-ut;j++)
                f[b][i]=max(f[b][i],f[l][j]+f[r][i-ut-j]);//更新父节点
    }
}
int main()
{
    scanf("%d",&xd);
    dfs();
    printf("%d",f[1][xd]);
    return 0;
}

 

转载于:https://www.cnblogs.com/qseer/p/9448002.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值