离散化这种东西qwq,如果我们不关心数值只关心相对大小或相对顺序就可以做啦。
LCS。给出1-n的两个排列P1和P2,求它们的最长公共子序列。(nlogn)
n^2的DP(f[i][j]的三种转移)跑不过,转化成别的问题来做。
因为数据不重复可以离散化。
第一个排列离散化后我们发现,如果能在第二个排列找到一段上升的子序列,那么一定和第一个排列是公共的。所以变成了求LIS。维护单调队列。。很模板。
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5+5;
int a[MAXN],b[MAXN],c[MAXN],n,belong[MAXN],num=0;
int tot=0;
inline void add(int x){
int l=1,r=tot,ans=tot+1;
while(l<=r){
int mid=l+r>>1;
if(c[mid]>x)r=mid-1,ans=mid;
else l=mid+1;
}
c[ans]=x;
if(ans==tot+1)tot++;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
belong[a[i]]=++num;
}
for(int i=1;i<=n;i++){
scanf("%d",&b[i]);
add(belong[b[i]]);
}
printf("%d\n",tot);
return 0;
}
逆序对:
我们考虑使用线段树来做,两种方法。
1:直接按照给定序列操作,建权值线段树记录该权值有多少数。按顺序在权值处加上个数,因为是按时间轴操作的,所以每次查询在那个数前面有多少数比他大就可以了。但我们发现可能会MLE。。
2:考虑按顺序离散化为1…n的序列。
按权值大小排序。按排序后的操作,这样时间轴是乱的。。我们建下标树,查询小于自己下标的数有多少在树里的(在树中的比他大)。
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5+5;
struct data{
int val,num;
}a[MAXN];
bool cmp(data a,data b){
return a.val>b.val;
}
int sumv[MAXN<<2];
struct xds{
#define lson (o<<1)
#define rson (o<<1|1)
inline void pushup(int o){sumv[o]=sumv[lson]+sumv[rson];}
inline void change(int o,int l,int r,int pos){
if(l==r){sumv[o]++;return;}
int mid=l+r>>1;
if(pos<=mid)change(lson,l,mid,pos);
else change(rson,mid+1,r,pos);
pushup(o);
}
inline int query(int o,int l,int r,int ql,int qr){
if(ql<=l&&qr>=r){return sumv[o];}
int mid=l+r>>1,ans=0;
if(ql<=mid)ans+=query(lson,l,mid,ql,qr);
if(qr>mid)ans+=query(rson,mid+1,r,ql,qr);
return ans;
}
}T;
int n;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i].val);
a[i].num=i;
}
sort(a+1,a+1+n,cmp);
int ans=0;
for(int i=1;i<=n;i++){
if(a[i].num!=1)ans+=T.query(1,1,n,1,a[i].num-1);
T.change(1,1,n,a[i].num);
}
printf("%d\n",ans);
return 0;
}