关于离散化 (LCS,逆序对)

离散化这种东西qwq,如果我们不关心数值只关心相对大小或相对顺序就可以做啦。

LCS。给出1-n的两个排列P1和P2,求它们的最长公共子序列。(nlogn)

n^2的DP(f[i][j]的三种转移)跑不过,转化成别的问题来做。

因为数据不重复可以离散化。
第一个排列离散化后我们发现,如果能在第二个排列找到一段上升的子序列,那么一定和第一个排列是公共的。所以变成了求LIS。维护单调队列。。很模板。

#include<bits/stdc++.h>
using namespace std;

const int MAXN=1e5+5;

int a[MAXN],b[MAXN],c[MAXN],n,belong[MAXN],num=0;
int tot=0;

inline void add(int x){
    int l=1,r=tot,ans=tot+1;
    while(l<=r){
        int mid=l+r>>1;
        if(c[mid]>x)r=mid-1,ans=mid;
        else l=mid+1;
    }
    c[ans]=x;
    if(ans==tot+1)tot++;
}

int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        belong[a[i]]=++num;
    }
    for(int i=1;i<=n;i++){
        scanf("%d",&b[i]);
        add(belong[b[i]]);
    }
    printf("%d\n",tot);
    return 0;
}

逆序对:
我们考虑使用线段树来做,两种方法。
1:直接按照给定序列操作,建权值线段树记录该权值有多少数。按顺序在权值处加上个数,因为是按时间轴操作的,所以每次查询在那个数前面有多少数比他大就可以了。但我们发现可能会MLE。。
2:考虑按顺序离散化为1…n的序列。
按权值大小排序。按排序后的操作,这样时间轴是乱的。。我们建下标树,查询小于自己下标的数有多少在树里的(在树中的比他大)。

#include<bits/stdc++.h>
using namespace std;

const int MAXN=1e5+5;

struct data{
    int val,num;
}a[MAXN];

bool cmp(data a,data b){
    return a.val>b.val;
} 

int sumv[MAXN<<2];
struct xds{
    #define lson (o<<1)
    #define rson (o<<1|1)
    inline void pushup(int o){sumv[o]=sumv[lson]+sumv[rson];}
    inline void change(int o,int l,int r,int pos){
        if(l==r){sumv[o]++;return;}
        int mid=l+r>>1;
        if(pos<=mid)change(lson,l,mid,pos);
        else change(rson,mid+1,r,pos);
        pushup(o);
    }
    inline int query(int o,int l,int r,int ql,int qr){
        if(ql<=l&&qr>=r){return sumv[o];}
        int mid=l+r>>1,ans=0;
        if(ql<=mid)ans+=query(lson,l,mid,ql,qr); 
        if(qr>mid)ans+=query(rson,mid+1,r,ql,qr);
        return ans; 
    }
}T;
int n;
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i].val);
        a[i].num=i;
    }
    sort(a+1,a+1+n,cmp);
    int ans=0;
    for(int i=1;i<=n;i++){
        if(a[i].num!=1)ans+=T.query(1,1,n,1,a[i].num-1);
        T.change(1,1,n,a[i].num);   
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值