欧拉计划第29题

不同的幂

考虑所有满足2 ≤ a ≤ 5和2 ≤ b ≤ 5的整数组合生成的幂ab:

22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125

如果把这些幂按照大小排列并去重,我们得到以下由15个不同的项组成的序列:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

在所有满足2 ≤ a ≤ 100和2 ≤ b ≤ 100的整数组合生成的幂ab排列并去重所得到的序列中,有多少个不同的项?

 

代码演示


#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define MAX_N 100

struct Data {
    int cnt, p[5], a[5];
    int i, j;
} arr[MAX_N * MAX_N];
int cnt = 0;

bool same(Data &a, Data &b) {
    if (a.cnt != b.cnt) return false;
    for (int i = 0; i < a.cnt; i++) {
        if (a.p[i] != b.p[i] || a.a[i] != b.a[i]) return false;
    }
    return true;
}

void add(int a, int b) {
    Data temp;
    temp.cnt = 0;
    temp.i = a, temp.j = b;
    int i = 2;
    while (a != 1) {
        if (a % i == 0) {
            temp.p[temp.cnt] = i;
            temp.a[temp.cnt] = 0;
            while (a % i == 0) a /= i, temp.a[temp.cnt] += 1;
            temp.cnt += 1;
        }
        i += 1;
    }
    for (int i = 0; i < temp.cnt; i++) temp.a[i] *= b;
    for (int i = 0; i < cnt; i++) {
        if (!same(temp, arr[i])) continue;
        return ;
    }
    memcpy(arr + cnt, &temp, sizeof(temp));
    cnt += 1;
    return ;
}

bool cmp(const Data &a, const Data &b) {
    return a.j * log10(a.i) < b.j * log10(b.i);
}

int main() {
    for (int i = 2; i <= MAX_N; i++) {
        for (int j = 2; j <= MAX_N; j++) {
            add(i, j);
        }
    }
    sort(arr, arr + cnt, cmp);
    for (int i = 0; i < cnt; i++) {
        printf("%d ^ %d\n", arr[i].i, arr[i].j);
    }
    cout << cnt << endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值