【PyTorch】常见错误
错误:
RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same

问题原因:
错误内容就在类型不匹配,根据报错内容可以看出Input type为torch.FloatTensor(CPU数据类型),而weight type(即网络权重参数这些)为torch.cuda.FloatTensor(GPU数据类型)。
解决方法:
既然网络参数是GPU类型,那解决方法就是将输入类型转变为GPU类型,需要使用到cuda,没有cuda就解决不了。实现方法有两种:
device = torch.device('cuda:0')
inputs = inputs.to(device)inputs = inputs.cuda()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(torch.cuda.is_available())
inputs = inputs.to(device) # 方法一:将input这个tensor转换成了CUDA 类型
inputs = inputs.cuda() # 方法二:将input这个tensor转换成了CUDA 类型
类似错误:
若与上面错误是反的,即 RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
那就同理,对net进行转换。
device = torch.device('cuda:0')
net= net.to(device)net = net.cuda()
本文解析了PyTorch中常见的类型错误“RuntimeError: Input type 和 weight type 应相同”,详细介绍了错误产生的原因,提供了两种解决方案,即将输入类型转换为与网络权重相同的GPU类型,确保训练过程顺利。
4435

被折叠的 条评论
为什么被折叠?



