面试专区|【43道MySQL高频题整理(附答案背诵版)】

谈一谈你对数据库的理解?

数据库是一个用于存储和管理数据的工具,它提供了一种结构化的方式来组织和访问数据。数据库可以存储大量的数据,并且可以通过查询语言进行检索、更新和删除数据。

数据库的主要目的是提供一个可靠的数据存储和管理系统,以满足各种应用的需求。它可以用于存储各种类型的数据,如用户信息、产品信息、日志记录等。

数据库有很多种类型,其中最常见的是关系型数据库,如MySQL。关系型数据库使用表格的形式来组织数据,并且使用结构化查询语言(SQL)来操作数据。这种数据库适用于需要进行复杂查询和数据关联的场景,比如电子商务网站的订单管理和库存管理。

除了关系型数据库,还有其他类型的数据库,如非关系型数据库(NoSQL)。非关系型数据库适用于需要处理大量数据、高并发和分布式系统的场景,比如社交媒体应用的用户关系图和日志记录。

总之,数据库是一个重要的数据管理工具,它提供了可靠的数据存储和检索机制,为各种应用提供了数据支持。

MySQL有哪些应用场景?

MySQL在各个行业和领域都有广泛的应用场景。以下是一些常见的MySQL应用场景:

  1. 网站和应用程序的后端存储:MySQL可以作为网站和应用程序的后端数据库,用于存储用户信息、产品信息、订单信息等。它可以处理大量的并发请求,支持高效的数据访问和查询。

  2. 数据分析和报表生成:MySQL可以存储大量的数据,并且支持复杂的查询操作,因此它经常被用于数据分析和报表生成。通过编写SQL查询语句,可以从数据库中提取和分析数据,并生成相关的报表和统计结果。

  3. 日志记录和审计:MySQL可以用于存储系统日志和审计数据。通过将日志数据存储在数据库中,可以方便地检索和分析日志信息,以便进行故障排查、安全审计和性能优化等工作。

  4. 在线交易处理:MySQL具有事务支持和 ACID 特性,因此它经常被用于处理在线交易。比如电子商务网站的订单管理、支付系统的交易记录等,都可以通过MySQL来实现。

  5. 内容管理系统:MySQL可以作为内容管理系统(CMS)的后端数据库,用于存储和管理网站的内容,比如文章、页面、评论等。它提供了高效的数据存储和检索机制,方便管理和展示网站内容。

这只是MySQL的一些常见应用场景,实际上,MySQL还可以用于许多其他领域,如物联网数据管理、人工智能和机器学习等。它的灵活性和可扩展性使得它成为一种广泛应用的数据库解决方案。

什么是索引?

MySQL索引是一种数据结构,用于提高数据库查询的速度和效率。它类似于书中的目录,可以帮助数据库系统快速定位到存储数据的位置,减少了数据库的扫描和比较操作。

举个例子来说,假设你有一本书,想要找到其中某个特定的章节,如果没有目录,你只能一页一页地翻找,非常耗时。但如果书中有目录,你只需要查找目录中的关键词,就能迅速找到所需章节的页码,大大提高了查找效率。索引在数据库中的作用就类似于这个目录。

在MySQL中,索引可以根据不同的列或列组合来创建。当执行查询时,MySQL可以利用索引快速定位到满足查询条件的行,而不必扫描整个数据表。这样可以提高查询的速度,并减少数据库的负载。

什么字段适合创建索引?

在MySQL中,创建索引的选择需要综合一下几个考虑:

  1. 常用作查询条件的字段: 如果表的某个列经常用于where子句中,为该列建立一个索引可以极大地提高查找速度。

  2. 常用作连接的列: 如果一列经常出现在多表查询的关联条件里,为该列建索引一样可以提高效率。

  3. 在ORDER BY, GROUP BY或DISTINCT中经常使用的列: 这能大大提升排序和分组等操作的速度。

  4. 区分度比较高的字段:比如每个用户会有一个ID,显然每个用户的ID都是不一样的,这样的话,数据的区分度就很高,就适合做索引,但是想用户性别这种,只有男,女两种,基本没有啥区分度,那么不适合做索引。

例如,电商网站的订单表,用户ID是一个选择性很高的字段,因为每条记录的用户ID基本都是唯一的,可以用来查询某用户所有的订单;订单状态则经常作为查询条件,例如查询所有未处理的订单;订单ID则可作为连接订单表和订单详情表的字段;最后订单日期(OrderDate)可能经常用于排序和分组,例如列出最近一个月的所有订单等。

需要提醒的是,虽然索引能提高查询效率,但它也并非越多越好。因为索引会占用额外的磁盘空间,并且在插入、删除和更新表的操作时会造成额外的性能开销。因此,在选择哪些字段创建索引时要找到适当的平衡。

什么字段不适合创建索引?

以下几种情况的字段不适合创建索引:

  1. 数据重复度高的字段:字段的唯一性越好,索引性能越好。如果字段中数据重复度高,那么这个字段就不适合创建索引。比如:性别,只有男、女两个值,在几千万、几亿的数据表中,这个字段的重复度就非常高。

  2. 数据量小或者数据分布极为不均匀的字段:如果表的记录非常少,或者表中的数据分布非常不均,索引将无法发挥效用。

  3. 经常改动的字段:如果某列经常进行insert、delete、update操作,对这样的列建立索引,虽然可以提高查询速度,但同时也会降低更新速度。

  4. 不常用于查询条件的字段:如果某个字段不常用于查询条件(WHERE子句中),那么创建索引不但无法提升性能,反而会浪费磁盘空间。

比如电商网站的用户表,用户的注册时间(register_date)字段基本上不会在WHERE条件中频繁出现,因此无需为此字段建索引。用户的密码(password)字段通常也不会用于查询条件,并且由于需要经常更新密码,因此对此字段建立索引可能会降低性能。同样,用户的年龄字段(age)可能有大量重复值,所以索引效果可能并不理想。

索引的底层使用的是什么数据结构?

MySQL的索引底层主要使用了两种数据结构,分别是B+Tree索引和Hash索引。

  1. B+Tree索引:大部分MySQL存储引擎的默认索引类型。B+Tree是一种平衡多路查找树,可以保证数据的有序性,并且有较高的查找效率。比如InnoDB存储引擎就采用的B+Tree索引。在B+Tree索引中,索引项是按照顺序排列并分布在树上的,这样对范围查询和排序就有了很大的优势。

  2. Hash索引:Memory存储引擎的索引就采用了Hash索引,适用于等值查询,但不支持范围查询和排序等操作。Hash索引的查询速度非常快,但是索引的维护成本较高,而且Hash冲突的存在也会影响查询性能。

需要注意的是,还有其他类型的索引,例如空间数据索引(基于R-Tree的GIS空间索引),全文索引等,但是在底层使用最广泛的数据结构依然是B+Tree索引和Hash索引。

为什么 InnoDB 存储引擎选用 B+ 树而不是 B 树呢?

InnoDB存储引擎选择B+树作为索引结构,而非B树,主要出于以下几个原因:

  1. 磁盘I/O操作降低: B+树只需要遍历少数节点就可以找到需要的数据,I/O次数大大减少,降低了磁盘I/O操作。

  2. 查询效率更稳定: B+树的每一个叶子节点存储了所有的键值,所有数据的查找必须从根节点开始进行,而不像B树那样,其搜索性能最好时可在顶端完成,最差则可能要寻找到叶子节点,因此,B+树的查询稳定性更好。

  3. 非叶子节点不存储数据,可以存储更多的键: 这意味着B+树的非叶子节点可以存储的键值数量更多,所以树的高度会更低,查询效率更高。

  4. B+树的叶子节点都相连: 这对于范围查询极其有利。如果你需要进行一个范围查询,你只需要找到范围的最小值,然后沿着叶子节点链表往后读就行了,直到遇到范围的最大值。而如果你用B树的话,查找范围最小值和最大值是独立的,二者没有任何关系。

以上的这些优势,使得InnoDB在处理大型数据时,具有良好的性能以及更高的存储效率,因此,它选择了B+树作为其索引的数据结构。

B+树的分裂过程可以简单介绍一下吗?

在B+树中,当一个节点的关键字数目达到了这个节点的最大容量(即,如果一个节点已满),如果此时我们还想要插入新的关键字,那么我们就需要进行分裂操作。

假设M是节点最大的关键字数目,那么分裂过程如下:

  1. 首先,将这个满的节点增加一个关键字后,所有关键字需要重新排序。

  2. 然后,选择中间的那个关键字,将其升级到其父节点中(如果原节点是根节点,那么就创建一个新的根节点,并将这个中间关键字升级)。

  3. 在升级后,原节点会被这个选中的中间关键字分裂为两个节点。在这两个新节点中,左节点包含原节点中的前半部分关键字(不包括中间关键字),而右节点则包含后半部分的关键字。

  4. 如果分裂操作发生在非叶子节点,需要注意的是中间关键字只升级到父节点,不会留在原节点,而原节点的子节点也相应的分配到新的两个分裂出的节点中。

  5. 分裂操作可能会向上递归到根节点,当根节点满时,同样会发生分裂,并且树的高度会增加。

通过这样的分裂操作,B+树始终保持了平衡性,确保了查询效率。

MySQL 索引分类有哪些?

在MySQL的InnoDB存储引擎中,大致可以将索引分为以下四类:

  1. 主键索引 (Primary Key):主键索引是所有InnoDB表必须的,且一个表中只能有一个主键索引。InnoDB的数据文件就是按照主键顺序存放的,也就是聚簇索引。主键索引的选择对查询的性能有很大的影响。

  2. 唯一索引 (Unique Index):唯一索引中的键值必须唯一,但允许有空值。如果是组合索引,则组合的值必须唯一。

  3. 普通索引 (Normal Index) 或非唯一索引:这是最基本的索引,没有任何约束。

  4. 全文索引 (Fulltext Index):主要用于全文搜索,即针对大文本进行的搜索。MySQL的InnoDB和MyISAM存储引擎都支持全文索引。但是,InnoDB的全文索引在功能和性能上与MyISAM存在差距,如需对全文索引的性能要求较高,或者对全文索引的更高级功能有所要求,建议使用MyISAM存储引擎。

这四种索引对应了不同的应用场景,例如主键索引是一种特殊的唯一索引,不仅要求索引的唯一性,还要求表中每一行数据都必须有一个唯一索引,它是每个表中的主键字段。非唯一索引允许表中有重复的键值。全文索引用于InnoDB表或者MyISAM表的全文搜索。

什么是外键?

外键(Foreign Key)是用于建立表与表之间关联关系的一种约束。它定义了两个表之间的引用关系,确保了数据的完整性和一致性。

外键通常由一个表中的字段(子表)引用另一个表中的主键字段(父表)。子表中的外键列包含了父表中对应主键列的值,从而建立了两个表之间的关联。

外键的作用有以下几个方面:

  1. 数据完整性:外键约束保证了数据的完整性,防止了子表中引用了不存在的父表数据。如果试图在子表中插入一个不符合外键约束的值,将会被拒绝。

  2. 数据一致性:外键约束确保了表之间的数据一致性。当父表中的主键值更新或删除时,相关联的子表中的外键值也会相应更新或删除,保持了数据的一致性。

  3. 查询优化:外键可以用于优化查询操作。通过外键关联,可以轻松地进行表之间的关联查询,提高查询效率。

举个例子,假设有两个表:学生表(Student)和班级表(Class)。学生表中有一个外键列 class_id,它引用了班级表的主键列 class_id。这样,每个学生都与一个班级相关联。当需要查询某个班级的学生时,可以使用外键关联进行查询,提高查询效率。

总之,外键是用于建立表与表之间关联关系的一种约束,它确保了数据的完整性和一致性,并提供了查询优化的功能。

什么是覆盖索引?

覆盖索引(Covering Index)是指一个查询语句的执行只用从索引中就能获取到足够的信息,不需要再去实际的数据行中检索。比如一个表中有100列,我们要查询某个字段的总和或者平均值,如果这个字段已经被索引了,那么查询时就只需要读取索引,而不需要访问表,这样就大大提升了查询性能。

例如,假设有一个用户表 USER,主键为 USER_ID,以 EMAIL 和 USERNAME 为索引。当你执行如下查询语句时:

SELECT EMAIL, USERNAME FROM USER WHERE EMAIL='test@example.com'

查询只需要读索引,因为索引已经包含了所有查询所需信息,即 EMAIL 和 USERNAME。查询不需要查询实际的数据行,使其成为“覆盖索引”。这样做可以大大提高查询效率,因为索引项大小一般远小于实际的行数据。

什么是联合索引?

联合索引(Composite Index)是基于两个或者更多列的索引。所谓的联合索引并不是单纯地将各个列上的索引组合起来,而是将几个列作为一个整体建立一个索引。这样,数据库系统可以快速找到给定索引列的子集。

例如,假设我们有一个Person表,该表有三列:FirstName,LastName和BirthDate。 如果我们经常需要查询具有特定姓和名的人,那么我们可以创建一个联合索引,如下所示:

CREATE INDEX index_name ON Person (LastName, FirstName)

这样,当执行如下查询时:
SELECT * FROM Person WHERE LastName='Doe' AND FirstName='John'
MySQL 将多次快速找到 LastName 为 ‘Doe’ 和 FirstName 为 ‘John’ 的条目,因为它们在索引中一起存在。

联合索引遵循最左前缀原则,就是说如果联合索引有三个字段(A,B,C),那么你查A,A,B或A,B,C时,都可以利用上这个索引。但查询单独B,B,C或者C并不能利用这个索引。所以设立联合索引的顺序也很重要,需要根据查询的需求来排序。

如果创建联合索引?举个例子

创建联合索引的语法与创建单列索引相似,唯一不同的是你将多个列名当作参数传递给INDEX关键字。以下是创建联合索引的基本语法:

sqlCREATE INDEX index_name  
ON table_name (column1, column2,...);

假设我们有一个名为 Students 的表,其中包含三列:StudentID, FirstName, 和 LastName。我们要创建一个在两列(FirstName,LastName)上的联合索引,可以使用以下SQL命令:

sqlCREATE INDEX idx_firstname_lastname
ON Students (FirstName, LastName);

在这个例子中, “idx_firstname_lastname” 是索引的名称,“Students” 是表的名称,之后括号内的是需要被索引的列名。

这样,当我们进行以下查询时,这个联合索引就能够大大提升查询效率:

sqlSELECT *
FROM Students
WHERE FirstName = 'John' AND LastName = 'Doe';

因为姓和名被当作一个整体在索引中查找,所以查找效率会比单独查找每个字段并对结果进行交集运算高得多。

什么情况下索引会失效?即查询不走索引?

在一些特定的情况下,即使表上存在索引,索引也可能不生效,不能被查询优化器使用。以下是一些常见的情况:

  1. 使用!=或<>操作符:索引对期待扫描全部数据的查询通常没有帮助,尤其是不等式查询。
  2. 对索引列进行计算或函数操作:如果对一个索引列进行函数操作,那么引擎将无法使用索引,因为它必须对每个行执行函数操作后才能比较结果。例如:SELECT * FROM table WHERE YEAR(date_column) = 2022;
  3. 使用LIKE操作符以%开头的模糊查询:当LIKE的模式值以通配符%开头时,无法使用索引,因为查询引擎无法知道搜索结果在何处开始或结束。例如:SELECT * FROM table WHERE column LIKE '%Z';
  4. 联合索引中使用最左前缀原则。像 (col1, col2, col3) 这样的联合索引只有在查询条件在索引树左侧时才能够被用到。比如查询 col1col1, col2,索引是起效的。但当查询 col2 或者 col3 或者 col2, col3这样,该索引就不起作用了。
  5. 数据类型不一致:如果查询中的数据类型与索引中的数据类型不一致,MySQL将无法使用索引。

SQL用了 like 来查询会走索引吗?

LIKE 子句在某些情况下会使用索引,但这取决于你如何使用它。以下是一些具体的规则:

  1. 如果 LIKE 子句以通配符 % 开始,例如 LIKE '%abc',那么 MySQL 就不会使用索引,而是进行全表扫描。因为MySQL无法确定搜索的起始位置。

  2. 如果 LIKE 子句不以通配符 % 开头,例如 LIKE 'abc%',则 MySQL 可以使用索引。这是因为在这种情况下,MySQL可以从索引的开始部分进行扫描。

  3. 如果 LIKE 子句的通配符 % 在中间,例如 LIKE 'a%bc',则MySQL在匹配到第一个通配符之前的部分(在这里是 ‘a’)可以使用索引。

所以的确有可能使用 LIKE 进行索引查询,但这完全取决于你如何使用它。如果可能,避免以 % 开头的查询模式能帮助提高查询的效率。

例如, 你在运行一个电商网站, 并有一个商品数据库. 这个数据库有一个"商品名称"列, 并且在这个列上有一个索引。如果用户在你的网站上搜索以特定词开始的商品(比如 “电脑”),你可能会对 “商品名称” 列运行一个查询如 LIKE '电脑%',这种情况下,数据库将会使用索引进行查询优化。

谈谈你对最左前缀原则的理解?

最左前缀原则是 MySQL 使用联合索引的一种重要原则,它决定了数据库可以如何利用索引进行查询优化。

联合索引是指一个索引包括多个列。例如,你有一个表包含 last_namefirst_name两列,你可以创建一个联合索引包含这两列。

这个时候,最左前缀原则就发挥作用了。根据该原则,你可以只通过该联合索引的“最左”部分进行搜索。反过来说,如果你的查询不包含索引的最左部分,那么 MySQL 将无法利用该索引。

举个例子,假设有个联合索引 (last_name, first_name),以下查询可以利用到索引:

  • 查询 last_name='Smith'
  • 查询 last_name='Smith' AND first_name='John'

而以下查询则无法利用到索引:

  • 查询 first_name='John'

虽然 first_name 是索引的一部分,但它并不是最左部分,因此不能使用该索引。在实际应用中,这种设计有助于我们合理创建索引,并按照最左前缀原则编写我们的查询,以提高查询效率。

由于内容太多,更多内容以链接形势给大家,点击进去就是答案了

16. 什么情况下索引会失效?即查询不走索引?

17. 查询性能的优化方法?

18. InnoDB 和 MyISAM 的比较?

19. 谈谈你对水平切分和垂直切分的理解?

20. 主从复制中涉及到哪三个线程?

21. 主从同步的延迟原因及解决办法?

22. 谈谈你对数据库读写分离的理解?

23. 请你描述下事务的特性?

24. 谈谈你对事务隔离级别的理解?

25. 解释下什么叫脏读、不可重复读和幻读?

26. MySQL 默认的隔离级别是什么?

27. 谈谈你对MVCC 的了解?

28. 说一下 MySQL 的行锁和表锁?

29. InnoDB 存储引擎的锁的种类有哪些?

30. MySQL 问题排查都有哪些手段?

31. MySQL 数据库 CPU 飙升到 500% 的话他怎么处理?

32. MySQL的redo log,undo log,bin log都是干什么的

33. SQL 与 MySQL 有什么区别

34. 添加索引的原则

35. 有哪些事务状态

36. 什么是死锁?如何解决死锁?

37. 什么是乐观锁和悲观锁?如何实现?

38. 什么是超键?什么是主键?

39. UNION 与 UNION ALL 的区别

40. DROP、DELETE 与 TRUNCATE 的区别

41. 为什么要分库分表

42. 分库分表存在哪些问题

43. MySQL 读写分离的实现方案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值