3 学习过程收敛速度的界
3.1 基本不等式
考虑模式识别问题,即 Q ( z , α ) , α ∈ Λ Q(z, \alpha), \alpha \in \Lambda Q(z,α),α∈Λ 为指示函数集,设
R ( α ) = ∫ Q ( z , α ) d F ( z ) R e m p ( α ) = 1 l ∑ i = 1 l Q ( z , α ) R(\alpha) = \int Q(z, \alpha)dF(z) \ \ \ R_{emp}(\alpha) = \dfrac{1}{l} \sum_{i=1}^l Q(z, \alpha) R(α)=∫Q(z,α)dF(z) Remp(α)=l1i=1∑lQ(z,α)
定理 3.1
P { sup α ∈ Λ ∣ R ( α ) − R e m p ( α ) ∣ > ϵ } ≤ 4 exp { H a n n Λ ( 2 l ) − ϵ 2 l } P\{ \sup\limits_{\alpha \in \Lambda} | R(\alpha) - R_{emp}(\alpha)| > \epsilon \} \le 4\exp\{H_{ann}^\Lambda(2l) - \epsilon^2l\} P{
α∈Λsup∣R(α)−Remp(α)∣>ϵ}≤4exp{
HannΛ(2l)−ϵ2l}
定理 3.2
P { sup α ∈ Λ R ( α ) − R e m p ( α ) R ( α ) > ϵ } ≤ 4 exp { H a n n Λ ( 2 l ) − ϵ 2 l 4 } P\{ \sup\limits_{\alpha \in \Lambda} \dfrac{R(\alpha) - R_{emp}(\alpha)}{\sqrt{R(\alpha)}} > \epsilon \} \le 4\exp\{H_{ann}^\Lambda(2l) - \dfrac{\epsilon^2l}{4}\} P{
α∈ΛsupR(α)R(α)−Remp(α)>ϵ}≤4exp{
HannΛ(2l)−4ϵ2l}
由于 H a n n Λ ( l ) ≤ G Λ ( l ) H_{ann}^\Lambda(l) \le G^\Lambda(l) HannΛ(l)≤GΛ(l), 显然有以下推论成立
P { sup α ∈ Λ ∣ R ( α ) − R e m p ( α ) ∣ > ϵ } ≤ 4 exp { G Λ ( 2 l ) − ϵ 2 l } P\{ \sup\limits_{\alpha \in \Lambda} | R(\alpha) - R_{emp}(\alpha)| > \epsilon \} \le 4\exp\{G^\Lambda(2l) - \epsilon^2l\} P{
α∈Λsup∣R(α)−Remp(α)∣>ϵ}≤4exp{
GΛ(2l)−ϵ2l}
P { sup α ∈ Λ R ( α ) − R e m p ( α ) R ( α ) > ϵ } ≤ 4 exp { G Λ ( 2 l ) − ϵ 2 l 4 } P\{ \sup\limits_{\alpha \in \Lambda} \dfrac{R(\alpha) - R_{emp}(\alpha)}{\sqrt{R(\alpha)}} > \epsilon \} \le 4\exp\{G^\Lambda(2l) - \dfrac{\epsilon^2l}{4}\} P{
α∈ΛsupR(α)R(α)−Remp(α)>ϵ}≤4exp{
GΛ(2l)−4ϵ2l}
3.2 对实函数集的推广
设实函数集合
A = inf α , z Q ( z , α ) ≤ Q ( z , α ) ≤ sup α , z Q ( z , α ) = B , A , B ∈ R ∪ { − ∞ , + ∞ } A = \inf\limits_{\alpha, z} Q(z, \alpha) \le Q(z, \alpha) \le \sup\limits_{\alpha, z} Q(z, \alpha) = B,\ \ \ A,B \in \reals \cup \{-\infty, +\infty \} A=α,zinfQ(z,α)≤Q(z,α)≤α,zsupQ(z,α)=B, A,B∈R∪{
−∞,+∞}
设有指示器集合( θ \theta θ 为阶跃函数)
I ( z , α , β ) = θ ( Q ( z , α ) − β ) , α ∈ Λ , β ∈ Γ = ( A , B ) I(z, \alpha, \beta) = \theta(Q(z, \alpha) - \beta),\ \ \ \alpha \in \Lambda, \beta \in \Gamma = (A, B) I(z,α,β)=θ(Q(z,α)−β), α∈Λ,β∈Γ=(A,B)
设指示器集合的VC熵,退火熵,生长函数为
H Λ , Γ ( l ) , H a n n Λ , Γ ( l ) , G Λ , Γ ( l ) H^{\Lambda, \Gamma}(l),\ \ \ H_{ann}^{\Lambda, \Gamma}(l),\ \ \ G^{\Lambda, \Gamma}(l)