统计学习理论的本质 笔记 3 学习过程收敛速度的界

本文深入探讨了统计学习理论中的学习过程收敛速度的界限,通过基本不等式和实函数集的推广来分析。讨论了与分布无关的界,并引入了生长函数、VC维的概念,对学习机器的推广能力给出理论界限。同时,文章讨论了构造性界和依赖于分布的界,以及Kolmogorov-Smirnov分布的应用。
摘要由CSDN通过智能技术生成

3 学习过程收敛速度的界

3.1 基本不等式

考虑模式识别问题,即 Q ( z , α ) , α ∈ Λ Q(z, \alpha), \alpha \in \Lambda Q(z,α),αΛ 为指示函数集,设
R ( α ) = ∫ Q ( z , α ) d F ( z )     R e m p ( α ) = 1 l ∑ i = 1 l Q ( z , α ) R(\alpha) = \int Q(z, \alpha)dF(z) \ \ \ R_{emp}(\alpha) = \dfrac{1}{l} \sum_{i=1}^l Q(z, \alpha) R(α)=Q(z,α)dF(z)   Remp(α)=l1i=1lQ(z,α)

定理 3.1
P { sup ⁡ α ∈ Λ ∣ R ( α ) − R e m p ( α ) ∣ > ϵ } ≤ 4 exp ⁡ { H a n n Λ ( 2 l ) − ϵ 2 l } P\{ \sup\limits_{\alpha \in \Lambda} | R(\alpha) - R_{emp}(\alpha)| > \epsilon \} \le 4\exp\{H_{ann}^\Lambda(2l) - \epsilon^2l\} P{ αΛsupR(α)Remp(α)>ϵ}4exp{ HannΛ(2l)ϵ2l}

定理 3.2
P { sup ⁡ α ∈ Λ R ( α ) − R e m p ( α ) R ( α ) > ϵ } ≤ 4 exp ⁡ { H a n n Λ ( 2 l ) − ϵ 2 l 4 } P\{ \sup\limits_{\alpha \in \Lambda} \dfrac{R(\alpha) - R_{emp}(\alpha)}{\sqrt{R(\alpha)}} > \epsilon \} \le 4\exp\{H_{ann}^\Lambda(2l) - \dfrac{\epsilon^2l}{4}\} P{ αΛsupR(α) R(α)Remp(α)>ϵ}4exp{ HannΛ(2l)4ϵ2l}

由于 H a n n Λ ( l ) ≤ G Λ ( l ) H_{ann}^\Lambda(l) \le G^\Lambda(l) HannΛ(l)GΛ(l), 显然有以下推论成立
P { sup ⁡ α ∈ Λ ∣ R ( α ) − R e m p ( α ) ∣ > ϵ } ≤ 4 exp ⁡ { G Λ ( 2 l ) − ϵ 2 l } P\{ \sup\limits_{\alpha \in \Lambda} | R(\alpha) - R_{emp}(\alpha)| > \epsilon \} \le 4\exp\{G^\Lambda(2l) - \epsilon^2l\} P{ αΛsupR(α)Remp(α)>ϵ}4exp{ GΛ(2l)ϵ2l}
P { sup ⁡ α ∈ Λ R ( α ) − R e m p ( α ) R ( α ) > ϵ } ≤ 4 exp ⁡ { G Λ ( 2 l ) − ϵ 2 l 4 } P\{ \sup\limits_{\alpha \in \Lambda} \dfrac{R(\alpha) - R_{emp}(\alpha)}{\sqrt{R(\alpha)}} > \epsilon \} \le 4\exp\{G^\Lambda(2l) - \dfrac{\epsilon^2l}{4}\} P{ αΛsupR(α) R(α)Remp(α)>ϵ}4exp{ GΛ(2l)4ϵ2l}

3.2 对实函数集的推广

设实函数集合
A = inf ⁡ α , z Q ( z , α ) ≤ Q ( z , α ) ≤ sup ⁡ α , z Q ( z , α ) = B ,     A , B ∈ R ∪ { − ∞ , + ∞ } A = \inf\limits_{\alpha, z} Q(z, \alpha) \le Q(z, \alpha) \le \sup\limits_{\alpha, z} Q(z, \alpha) = B,\ \ \ A,B \in \reals \cup \{-\infty, +\infty \} A=α,zinfQ(z,α)Q(z,α)α,zsupQ(z,α)=B,   A,BR{ ,+}
设有指示器集合( θ \theta θ 为阶跃函数)
I ( z , α , β ) = θ ( Q ( z , α ) − β ) ,     α ∈ Λ , β ∈ Γ = ( A , B ) I(z, \alpha, \beta) = \theta(Q(z, \alpha) - \beta),\ \ \ \alpha \in \Lambda, \beta \in \Gamma = (A, B) I(z,α,β)=θ(Q(z,α)β),   αΛ,βΓ=(A,B)
设指示器集合的VC熵,退火熵,生长函数为
H Λ , Γ ( l ) ,     H a n n Λ , Γ ( l ) ,     G Λ , Γ ( l ) H^{\Lambda, \Gamma}(l),\ \ \ H_{ann}^{\Lambda, \Gamma}(l),\ \ \ G^{\Lambda, \Gamma}(l)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值