统计学习理论的本质 笔记 2 学习过程的一致性

2 学习过程的一致性

2.1 传统一致性定义和非平凡一致性概念

定义 对于风险泛函 R ( α ) R(\alpha) R(α) 和 经验风险 R e m p ( α ) R_{emp}(\alpha) Remp(α)
R ( α l ) → l → ∞ p inf ⁡ α ∈ Λ R ( α )   a n d   R e m p ( α l ) → l → ∞ p inf ⁡ α ∈ Λ R ( α ) R(\alpha_l) \xrightarrow[l \rightarrow \infty]{p} \inf\limits_{\alpha \in \Lambda} R(\alpha) \space and \space R_{emp}(\alpha_l) \xrightarrow[l \rightarrow \infty]{p} \inf\limits_{\alpha \in \Lambda} R(\alpha) R(αl)p lαΛinfR(α) and Remp(αl)p lαΛinfR(α)
则称ERM原则对 Q ( z , α ) , α ∈ Λ , F ( z ) Q(z, \alpha), \alpha \in \Lambda, F(z) Q(z,α),αΛ,F(z) 是一致的。

定义 定义
Λ ( c ) = { α : ∫ Q ( z , α ) d F ( z ) > c , α ∈ Λ } \Lambda (c) = \{\alpha: \int Q(z, \alpha)dF(z) > c, \alpha \in \Lambda \} Λ(c)={ α:Q(z,α)dF(z)>c,αΛ}

inf ⁡ α ∈ Λ ( c ) R e m p ( α ) → l → ∞ P inf ⁡ α ∈ Λ ( c ) R ( α ) , ∀ Λ ( c ) ≠ ∅ \inf\limits_{\alpha \in \Lambda (c)} R_{emp} (\alpha) \xrightarrow[l \rightarrow \infty]{P} \inf\limits_{\alpha \in \Lambda (c)} R(\alpha), \forall \Lambda(c) \not = \varnothing αΛ(c)infRemp(α)P lαΛ(c)infR(α),Λ(c)=
称ERM原则对 Q ( z , α ) , α ∈ Λ , F ( z ) Q(z, \alpha), \alpha \in \Lambda, F(z) Q(z,α),αΛ,F(z) 是非平凡一致的。这是为了排除函数集 Q ( z , α ) Q(z, \alpha) Q(z,α) 中包含一个对任意 z z z 均为最小的函数从而平凡地满足原定义的情况。

2.2 学习理论的关键定理

定理 2.1 (1989, Vapnik and Chervonenkis) 设函数集 Q ( z , α ) Q(z, \alpha) Q(z,α) 满足条件 A ≤ R ( α ) ≤ B A \le R(\alpha) \le B AR(α)B 那么 ERM原则一致性的充要条件为:
lim ⁡ l → ∞ P { sup ⁡ α ∈ Λ ( R ( α ) − R e m p ( α ) ) > ϵ } = 0 , ∀ ϵ > 0 \lim\limits_{l \rightarrow \infty} P\{ \sup\limits_{\alpha \in \Lambda} (R(\alpha) - R_{emp}(\alpha)) > \epsilon \} = 0, \forall \epsilon > 0 llimP{ αΛsup(R(α)Remp(α))>ϵ}=0,ϵ>0
称这种一致收敛为一致单边收敛。

2.3 一致双边收敛的充要条件

显然在定理2.1条件下有一致双边收敛充要条件:
lim ⁡ l → ∞ P { sup ⁡ α ∈ Λ ∣ R ( α ) − R e m p ( α ) ∣ > ϵ } = 0 , ∀ ϵ > 0 \lim\limits_{l \rightarrow \infty} P\{ \sup\limits_{\alpha \in \Lambda} |R(\alpha) - R_{emp}(\alpha)| > \epsilon \} = 0, \forall \epsilon > 0 llimP{ αΛsupR(α)Remp(α)>ϵ}=0,ϵ>0
我们希望找到上式的等价条件。

2.3.1 关于大数定理及其推广
2.3.2 指示函数集的熵

考虑模式识别问题,设 Q ( z , α ) , α ∈ Λ Q(z, \alpha), \alpha \in \Lambda Q(z,α),αΛ 为一个指示函数集,考虑样本 ( z i ) ( z_i ) (zi), 定义 N Λ ( z 1 , . . . , z l ) N^\Lambda (z_1,...,z_l) NΛ(z1,...,zl) 代表指示函数集中的函数能将给定样本二分类的种数。或者假设
q ( α ) = ( Q ( z 1 , α ) , . . . , Q ( z l , α ) ) , α ∈ Λ q(\alpha) = (Q(z_1, \alpha),...,Q(z_l, \alpha)), \alpha \in \Lambda q(α)=(Q(z1,α),...,Q(zl,α)),αΛ
那么在模式识别问题中, q ( α ) q(\alpha) q(α) 即为 l l l

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值