轨迹距离衡量-LCSS

本文介绍了如何使用LCSS(Longest Common Subsequence)算法来度量多维度轨迹的相似度,通过最长公共子序列的思想,计算轨迹点的匹配度,从而评估轨迹之间的相似性。Java实现代码实例展示了如何在给定误差容限下进行比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

轨迹距离衡量-LCSS

Paper pdf link: Discovering Similar Multidimensional Trajectories

基本思想

基于公共最长子序列,我们知道对于两个序列A,B 求其最长公共子序列的dp矩阵推导式如下:
dp(i, j) = 0 if |A|=0 or |B|=0
dp(i,j) = 1+dp(i-1,j-1) if A[i] == B[j]
dp(i,j) = max(dp(i-1,j), dp(i,j-1)) otherwise
我们可以将该思想应用到轨迹序列的距离衡量中:
在这里插入图片描述
在这里插入图片描述
根据该推导式,我们就可以设计计算函数了。LCSS越大,说明公共字段越多,相似的轨迹点越多,轨迹相似度越大。

Java实现LCSS

public static int[][] LCSS(float[][] traj1, float[][] traj2, int k, float epsilon)
	{
		int m = traj1.length;
		int n = traj2.length;
		int[][] dp = new int[m+1][n+1];
		
		// 初始化第一行第一列,序列为空的情况
		for(int i=0;i<m;i++)
		{
			dp[i][0] = 0;
		}
		for(int j=0;j<n;j++)
		{
			dp[0][j] = 0;
		}
		for(int i=1;i<m;i++)
		{
			for(int j=1;j<n;j++)
			{
				if(Math.abs(traj1[i][0]-traj2[j][0])<epsilon && 
						Math.abs(traj1[i][1]-traj2[j][1])<epsilon && 
						Math.abs(i-j)<=k) {
					dp[i][j] = dp[i-1][j-1]+1;
				}else {
					dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
				}
			}
		}
		return dp;
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UESTC Like_czw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值