机器学习模型-GBDT

本文详细介绍了GBDT(梯度提升决策树)的基本概念、训练过程、损失函数、正则化方法、特征选择以及在分类问题中的应用。GBDT是一种通过连续减少残差来构建加法模型的决策树集成方法,适用于处理各种类型数据,具有高准确率和对异常值的鲁棒性。在训练过程中,每轮迭代生成一个基于前一轮残差的CART回归树,损失函数根据任务的不同而变化。正则化通过设置步长、子采样和剪枝操作来防止过拟合。在分类问题中,GBDT需要进行one-hot编码,并在每轮迭代中训练对应类别的回归树,最终通过softmax函数得到概率预测。
摘要由CSDN通过智能技术生成

梯度提升随机树GBDT

1.基本概念

GBDT是一种基于集成思想的决策树模型,本质是基于残差学习。

特点在于:可处理各种类型的数据;有着较高的准确率;对异常值的鲁棒性强;不能并行训练数据

2.GBDT训练过程

GBDT采用加法模型,通过不断减小训练过程产生的残差,以此对数据进行回归或分类。GBDT进行多轮迭代,每轮迭代产生一个弱分类器CART回归树,该分类器是在上一轮分类器的残差结果基础上训练得到的。对弱分类器的要求是低方差、高偏差(低方差保证模型不会过拟合+高偏差在训练过程中会减小,以此提高精度)。为了使损失函数尽可能快地减小,用损失函数的负梯度作为残差的近似值,然后去拟合CART回归树。

3.GBDT损失函数

(分类):指数损失函数 + 对数似然损失函数

(回归):均方差 + 绝对损失 + Huber损失 + 分位数损失

4.GBDT正则化

方式: 设置步长 + 子采样 + 剪枝操作

5.GBDT选择特征

实质是CART树生成过程,包括选择特征及切分点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值