机器学习模型-CART(回归树)

本文介绍了基于CART的决策树模型,包括函数模块和调用,重点探讨了防止过拟合的策略,如设定叶子节点最小样本数、预剪枝和后剪枝方法。
摘要由CSDN通过智能技术生成

决策树Decision Tree(Based on CART)

(一)函数模块

 

 

 

 

(二)函数调用

(三)输出结果

注: 为防止树模型过拟合,采用了三种方式来处理

(1)控制叶子结点上样本的最少数量        (2)预剪枝            (3)后剪枝

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值