连号区间数 Apare_xzc

67 篇文章 2 订阅
15 篇文章 0 订阅

连号区间数

题目:

问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:

在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:

如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。

当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。

第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。

输出格式
输出一个整数,表示不同连号区间的数目。

样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9

做法:

连号区间数:N<=5E4
给定一个N的排列,求有多少个区间满足区间排序后为连续的数列

有一个比较容易想到的O(N^2)的算法:    1 2 3 4 5 
	遍历排列的每个区间,如果区间的最大值maxx减去最小值minn等于区间长度减一,那么这个区间排序后就能成为连续的数列
伪代码如下:
	ans = 0
	for left in range(1,N+1):
		maxx = minn = a[left]
		for right in range(left,N+1):   #当前的区间为a[left],a[left+1],a[left+2],...a[right]
			 maxx = max(maxx,a[right])
			 minn = min(minn,a[right])
			 if maxx-minn == right-left:
			 	ans += 1

第二种思路,参照codeforces 193D(Two Segments)的做法: 
定义函数f(L,R)为数字L,L+1,L+2...R-1,R 这个连续的数列在给定的排列中被分割成的段数
比如输入为 1 5 3 4 2 6,那么[1,3]被分割成了3段,[2,4]被分割成1段,[5,6]被分割成2段 
那么当L<=R 且 f(L,R)为 1 的时候,给定的排列中存在一段可以排序后构成L,L+1,L+2,...R-1,R这个连续的数列,那么ans+=1
我们现在枚举排序后组成区间的左右端点L和R,如果 f(L,R)为 1,那么答案+1
那么我们考虑状态的转移:已知 f(L,R)==K如何求得 f(L,R+1)呢? 
我们考虑R+1这个数在排列中出现的位置:
	1.如果R+1这个数和[L,R]这个数列在排列中被分割成的任何一段都不相邻,那么 f(L,R+1) = f(L,R)+1 = K+1
	2.如果R+1这个数和[L,R]这个数列在排列中被分割成的某一段相邻,那么f(L,R+1) = f(L,R) = K
	3.如果R+1这个数连接了[L,R]这个数列在排列中被分割的某两段,那么f(L,R+1) = f(L,R)-1 = K-1
	如果K<=2那么我们从f(L,R)到f(L,R+1)的转移就是O(1)的 
	
基于这个思路,我们可以两重循环遍历L和R,得到一个O(N^2)的算法:
	for L in range(1,N+1):
		map<pair<int,int>,int> mp;
		mp.insert( make_pair(make_pair(1,1),1) )
		pre = F[L][L] = 1; ans += 1
		for R in range(L+1,N+1):
			 p = pos[R];
			 for(auto x:mp):
。。。不太清楚要咋搞~

我们要计算的是:
	sum
	{
		for R from 1 to N:
			for L from 1 to R:
				f(L,R)==1 ? 1 : 0 
	} 
    我们可以从1到N遍历排序后的区间右端点R,然后用线段树处
理出f(1,R),f(2,R),f(3,R),...f(R,R)的信息
复杂度为O(NlogN)
    在第二重循环每次结束后,我们都需要统计一次f(1,R),f(2,R),f(3,R),
...,f(R,R)的所有信息,把值为1的个数统计出来。我们用线段树来维护这些函数值的信息,
因为f(x,y)的最小值为1,我们要求的就是f(x,y)为1的个数,所以我们可以用线段树来维护
区间最小值,以及等于最小值的数的个数。线段树的某一段[left,right]记录的是f(left,R)
,f(left+1,R),...f(left+2,R),f(right-1,R),f(right,R)这几个函数的最小值和等于最小值的个数
我们只需要查询区间最小值等于1的个数并累加即可 

每次循环的时候R+1,但目前记录的都是右端点等于R的信息,我们要做一些状态的转移
对于排序后的区间左端点i(1<=i<=R+1)来说,都要从线段树维护的都是f(i,R),都要转化
为f(i,R+1) 

刚才我们已经分析过了R+1这个数的位置对于f(x,R)转移到f(x,R+1)的影响
我们可以先假设R+1这个数出现的位置和1,2,3...R都不相邻,那么对于i from 1 to R,就
都有: f(i,R+1) = f(i,R) + 1, 我们可以用线段树进行区间加1,add(1,R,1)
但是R+1在排列中的位置左右两边可能会有小于R+1的数与之相邻,设为x,y,这样的话,如果x<R+1(y同理)
那么f(1,R+1),f(2,R+1),...f(x,R+1)都等于原来右端点为R的值,我们多加了1,要减回来add(1,x,-1)
如果y<R+1,同理
如果x,y均小于R+1,那么区间应该分别做减法
伪代码如下:
	ans = 0
	build_SegmentTree()		 	
	for R from 1 to N:
		add(1,R,1)
		pos_R = toPos[R]
		x = a[pos_R - 1]
		y = a[pos_R + 1]
		if(x&&x<R):
	   		add(1,x,-1)
	   	if(y&&y<R):
		    add(1,y,-1)
		ans += query(1,R) 

代码

/*
提交序号	姓名	试题名称	    提交时间     代码长度  CPU使用  得分 cpu使用 内存使用 
3835862	许智超	连号区间数	11-13 14:56	1.874KB	C++	正确   100	0ms	   3.605MB	
*/
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5e4+10;
#define LL long long
int Min[maxn*4],tot[maxn*4],lazy[maxn*4],a[maxn],pos[maxn];
int build(int left,int right,int pos);
void push_up(int pos);
void push_down(int pos);
int query(int left,int right,int L,int R,int pos);
void update(int left,int right,int L,int R,int add,int pos);
int main()
{
	int N;
	while(cin>>N)
	{
		for(int i=1;i<=N;++i)
			scanf("%d",a+i), pos[a[i]] = i;
		a[0] = a[N+1] = 0; 
		build(1,N,1);
		LL ans = 0;
		for(int R=1;R<=N;++R)
		{
			int p = pos[R];
			int x = a[p-1];
			int y = a[p+1];
			update(1,N,1,R,1,1);
			if(x>0&&x<R) update(1,N,1,x,-1,1);
			if(y>0&&y<R) update(1,N,1,y,-1,1);
			ans += query(1,N,1,R,1);
		}
		printf("%lld\n",ans);	
	}
	
	return 0;	
} 
void push_down(int pos)
{
	if(!lazy[pos]) return;
	lazy[pos*2] += lazy[pos];
	lazy[pos*2+1] += lazy[pos];
	Min[pos*2] += lazy[pos];
	Min[pos*2+1]+=lazy[pos];
	lazy[pos] = 0;
}
void push_up(int pos)
{
	Min[pos] = min(Min[pos*2],Min[pos*2+1]);
	tot[pos] = (Min[pos]==Min[pos*2])*tot[pos*2]+(Min[pos]==Min[pos*2+1])*tot[pos*2+1]; 
}
int build(int left,int right,int pos)
{
	Min[pos] = lazy[pos] = 0;
	if(left==right)
		return tot[pos] = 1;	
	int mid = (left+right)/2;
	return tot[pos] = build(left,mid,pos*2)+build(mid+1,right,pos*2+1);
} 
void update(int left,int right,int L,int R,int add,int pos) //区间都加1 
{
	if(left>R || right<L) return;
	if(L<=left && right<=R)
	{
		Min[pos]+=add;
		lazy[pos]+=add; //区间全都加1,最小值的个数不变 
		return;
	} 
	push_down(pos);
	int mid = (left+right)/2;
	update(left,mid,L,R,add,pos*2);
	update(mid+1,right,L,R,add,pos*2+1);
	push_up(pos);
}
int query(int left,int right,int L,int R,int pos)
{
	if(left>R||right<L) return 0;
	if(L<=left && right<=R) 
		return (Min[pos]==1)*tot[pos];
	push_down(pos);
	int mid = (left+right)/2;
	return query(left,mid,L,R,pos*2) + query(mid+1,right,L,R,pos*2+1);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值