python计算生态概览
从数据处理到人工智能
数据表示->数据清洗-> 数据统计->数据可视化->数据挖掘->人工智能
—数据表示:采用合适的方式用程序表达数据
—数据清洗:数据归一化、数据转换、异常值处理
—数据统计:数据的概要理解,数量、分布、中位数等
—数据可视化:直观展示数据的内涵的方式
—数据挖掘:从数据分析获取知识,产生数据外的价值
—人工智能:数据/语言/图像/视觉等方面深度分析与决策
python库之数据分析
python数据分析最基本的库是Numpy。
Numpy用于表达N维数组,它是众多数据分析库的基础,
—用C语言实现,python接口使用,计算速度优异
—几乎支撑力python数据分析与科学计算的所有其他库,比如最常用的pandas库等
—本身Numpy就提供了直接的矩阵运算、广播函数、线性代数等功能。
numpy可以将N维数组看作简单的数据对象,进行直接的操作和运算,这是numpy的最大价值。
Pandas:Python数据分析高层次应用库
—提供了简单易用的数据结构和数据分析工具
—理解数据类型与索引关系,操作索引及操作数据
—python最主要的数据分析功能库,基于Numpy开发
pandas库核心提供了两个数据结构
1、series=索引+一维数据
通过索引与一维数据关联,进而通过索引来操作数据
2、DataFrame=行列索引+二维数据
Scipy:数学、科学和工程计算功能库
—提供了一批数学算法及工程数据运算功能
—类似Matlab,可用于如傅立叶变换、信号处理等应用
—python最主要的科学计算功能库,基于Numpy开发,计算性能非常优异,在SciPy中提供了很多的优化算法
pyhton库之数据可视化
Matplolib:高质量的二维数据可视化功能库
—提供了超过100种数据可视化展示效果
—通过matlop.pylot子库调用可视化效果
— python最主要的数据可视化功能库,基于Numpy开发
Seaborn:统计类数据可视化功能库
—提供了一批高层次的统计类数据可视化展示效果
—主要展示数据空间分布、分类和线性关系等内容
—基于Matplotlib开发,支持Numpy和pandas
Mayavi:三维科学数据可视化功能库
—提供了一批简单易用的3D科学计算数据可视化效果
—目前版本是Mayavi2,三维可视化最主要的第三方库
—支持Numpy、TVTk、Trait、Envisage等第三方库
python库之文本处理
PyPDF2:用来处理PDF文件的工具集
—提供了一批处理PDF文件的计算功
—支持获取信息、分隔/整合文件、加密解压deng
—完全Python语言实现,不需要额外依赖,功能稳定
如果我们需要将两个PDF文件进行整合,我们的代码只需将两个文件打开,利用PyPDF库中的一个PdfFileMerger功能将它整合
NLTK:自然语言文本处理第三方库
—提供了一批简单易用的自然语言文本处理功能
—支持语言文本分类、标记、语法句法、语义分析等
—最优秀的Python自然语言处理库
Python-docx:创建或更新Microsoft Word文件的第三方库
—提供创建或更新.doc .docx等文件的计算功能
—增加并配置 段落、图片、表格、文字等,功能全面
Python库之机器学习
Scikit-learn:机器学习方法工具集
—提供一批统一化的机器学习方法功能接口
—提供聚类、分类、回归、强化学习等计算功能
—机器学习最基本且最优秀的Python第三方库
TensorFlow:AlphaGo背后的机器学习计算框架
—谷歌公司推动的开源机器学习框架
—将数据流图作为基础,图节点代表运算,边代表张量
—应用机器学习方法的一种方式,支撑谷歌人工智能应用
MXNet:基于神经网络的深度学习计算框架
—提供可扩展的神经网络及深度学习计算功能
—可用于自动驾驶、机器翻译、语音识别等众多领域
霍兰德人格分析雷达图
—需求:雷达图方式验证霍兰德人格分析
—输入:各职业人群结合兴趣的调研数据
—输出:雷达图
需要用到的第三方库
—通用雷达图绘制:matplotlib库
—专业的多维数据表示:numpy库
代码:
#HollandRadarDraw
from numpy import array,shape,arange
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family']='SimHei'
radar_labels = np.array(['研究型(I)','艺术型(A)','社会型(S)',\
'企业型(E)','常规型(C)','现实型(R)']) #雷达标签
nAttr = 6
data = np.array([[0.40, 0.32, 0.35, 0.30, 0.30, 0.88],
[0.85, 0.35, 0.30, 0.40, 0.40, 0.30],
[0.43, 0.89, 0.30, 0.28, 0.22, 0.30],
[0.30, 0.25, 0.48, 0.85, 0.45, 0.40],
[0.20, 0.38, 0.87, 0.45, 0.32, 0.28],
[0.34, 0.31, 0.38, 0.40, 0.92, 0.28]]) #数据值
data_labels = ('艺术家', '实验员', '工程师', '推销员', '社会工作者','记事员')
angles = np.linspace(0, 2*np.pi, nAttr, endpoint=False)
data = np.concatenate((data, [data[0]]))
angles = np.concatenate((angles, [angles[0]]))
fig = plt.figure(facecolor="white")
plt.subplot(111, polar=True)
plt.plot(angles,data,'o-', linewidth=1, alpha=0.2)
plt.fill(angles,data, alpha=0.25)
plt.thetagrids(angles*180/np.pi, radar_labels)
plt.figtext(0.52, 0.95, '霍兰德人格分析', ha='center', size=20)
legend = plt.legend(data_labels, loc=(0.94, 0.80), labelspacing=0.1)
plt.setp(legend.get_texts(), fontsize='large')
plt.grid(True)
plt.savefig('holland_radar.jpg')
plt.show()
结果: