第P3周 天气识别

🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/rbOOmire8OocQ90QM78DRA) 中的学习记录博客

🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)

 一、前期准备

1. 导入必要的库

import torch 
import torch.nn as nn
import torchvision.transforms as transforms 
import torchvision 
from torchvision import transforms, datasets 

import os, PIL, pathlib, random 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  #print(type = "cuda")

2. 导入数据

 创建pathlib.path路径对象,读取该文件夹下所有文件路径,并获取文件名

data_dir = './data/'
data_dir = pathlib.Path(data_dir)   #创建路径对象

data_paths = list(data_dir.glob('*'))   #获取文件夹下所有文件路径

classeNames = [str(path).split("\\")[1] for path in data_paths]  #将路径转化为字符串并切割出文件名(不包括拓展名)
classeNames

## data_paths = list(pathlib.Path('./data.').glob('*'))   #获取data文件夹下所有文件的路径
## classeNames = [str(path).split("\\")[1] for path in data_paths]    #获取文件名(不包括拓展名

PIL(Python Imaging Library)中的Image模块用于处理图像。 

import matplotlib.pyplot as plt 
from PIL import Image 

image_folder = './data/cloudy/'  #图像文件所在路径

# 获取文件夹中所有图像文件 
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", "jpeg", ".png"))]

# 创建matplotlib图像
fig, axes = plt.subplots(3, 8, fig size = (16, 6)

# 使用列表推导式加载和显示图像 
for ax, img_file in zip(axes.flat, image_files): 
    img_path = os.path.join(image_folder, img_file)   #拼接每个图像文件的路径
    img = Image.open(img_path) 
    ax.imshow(img) 
    ax.axis('off')

# 显示图像
plt.tight_layout()    #调整子图间距,紧凑排列
plt.show()

 

 pathlib.Path 和 os.listdir 用法:

from pathlib import Path

# 列出当前目录下的所有文件
for item in Path('.').iterdir():
    print(item)

# 获取当前目录下所有txt文件的路径
txt_files = Path('.').glob('*.txt')
for file in txt_files:
    print(file)

# 检查'example.txt'文件是否存在
if (Path('.') / 'example.txt').exists():
    print("File exists!")
else:
    print("File does not exist.")
import os

# 列出当前目录下的所有文件和目录
items = os.listdir('.')

for item in items:
    print(item)

# 获取当前目录下所有txt文件的路径
txt_files = [file for file in os.listdir('.') if file.endswith('.txt')]
for file in txt_files:
    print(file)

# 检查'example.txt'文件是否存在
if 'example.txt' in os.listdir('.'):
    print("File exists!")
else:
    print("File does not exist.")

创建图像数据集并对PIL Image做转换: 

将输入图片调整为统一尺寸(224x224像素)

转化为tensor,转化为标准正态分布

total_datadir = './data/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正态分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

输出:

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./data/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

3. 划分数据集

按照80%和20%的比例随机划分为train_datasettest_dataset;

torch.utils.data.random_split()函数将total_data按照给定的[train_size, test_size]比例进行随机划分:

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

输出: 

(<torch.utils.data.dataset.Subset at 0x1cd91e01ee0>,
 <torch.utils.data.dataset.Subset at 0x1cd91e01f70>)

 torch.utils.data.DataLoader()加载数据集:

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)

打印测试集形状(只打印一次):
N--批次数,C-通道数,H--高度,W--宽度

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

torch.utils.data.DataLoader参数解释:

  1. dataset:需要加载的数据集对象,通常是torchvision.datasets或自定义的数据集类。
  2. batch_size:每个批次的数据量大小。
  3. shuffle:是否在每个训练周期开始时打乱数据顺序,默认为False
  4. num_workers:用于数据加载的工作进程数,默认为0,表示数据将在主进程中加载。增加num_workers可以加速数据加载。
  5. pin_memory:是否将数据存储在CUDA固定内存中,以加快GPU数据传输速度,默认为False
  6. drop_last:当数据集大小不能被batch_size整除时,是否丢弃最后一个不完整的批次,默认为False
  7. timeout(可选):从工作进程获取数据的超时时间(秒),默认为0。
  8. worker_init_fn(可选):用于初始化工作进程的函数,默认为None
  9. collate_fn(可选):将一个batch的数据进行整理的函数,默认为None

二、构建简单的CNN网络

继承nn.Module创建自定义的神经网络层和模型

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        *************************************************
        nn.BatchNorm2d()(实现二维批量归一化操作):
        num_features:是输入张量的特征数量,通常对应于输入图像的通道数C 
        *************************************************
        nn.Linear():
        通道*高*宽,输出特征维度等于类别数
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      #卷积-批量归一化-激活
        x = F.relu(self.bn2(self.conv2(x)))      #卷积-批量归一化-激活
        x = self.pool(x)                         #池化
        x = F.relu(self.bn4(self.conv4(x)))      #卷积-批量归一化-激活
        x = F.relu(self.bn5(self.conv5(x)))      #卷积-批量归一化-激活
        x = self.pool(x)                         #池化
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)                          #全连接

        return x

## 检查是否支持CUDA,选并将模型移动到相应的设备上,返回模型对象:
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

输出:

Using cuda device

Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=4, bias=True)
)

三、训练模型

1. 设置超参数

损失函数、学习率、随即梯度下降优化器

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 编写训练函数

1. optimizer.zero_grad()

        用于将优化器中的所有梯度(即模型参数的梯度)清零。在每次迭代参数之前,都需要调用这个方法来清除之前的梯度,以确保只计算当前迭代的梯度;

2. loss.backward()负责计算梯度;

3. optimizer.step()则使用这些梯度来更新模型参数。

通过len(dataloader.dataset)获取训练集的大小;

通过len(dataloader)获取批次数目;

初始化训练损失(train_loss)和正确率(train_acc)为0;

使用for循环遍历数据加载器中的每个批次。在每次迭代中,首先将输入数据(X)和目标标签(y)移动到设备(device)上;

通过模型(model)计算预测结果(pred),并使用损失函数(loss_fn)计算预测结果和真实标签之间的loss;

进行反向传播,首先调用优化器的zero_grad()--loss.backward()--optimizer.step();

在每次迭代中,记录正确率(train_acc)和损失(train_loss),累加,并计算平均的正确率和损失:

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

 3. 编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

1. model.train()训练模式

当调用model.train()时,模型中的一些层(如Dropout层、BatchNorm层等)会进行特定的操作以适应训练环境。例如,Dropout层会在训练过程中随机丢弃一部分神经元,以防止过拟合;BatchNorm层会根据当前批次的数据计算均值和方差,并进行归一化操作;

2. model.eval()评估模式

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

epochs     = 20   #训练20轮次
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []  

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

 四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值