第P2周:CIFAR10彩色图片识别

🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/rbOOmire8OocQ90QM78DRA) 中的学习记录博客
🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)

一、前期准备

1. 导入数据集

下载数据集,并存储到data目录:

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将图像数据转化为Pytorcvh张量(Tensor)
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将图像数据转化为Pytorcvh张量(Tensor)
                                      download=True)

DataLoader是一个数据加载器,将数据集分批次进行训练和测试,batch_size为每批次取出的样本大小,shuffle表示在每个epoch开始时将训练集打乱

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

从train_dl中取出一个批次查看 

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape

shape为批次大小、通道数、宽度、高度(RGB图像通道数通常为3)

 

2. 可视化

import numpy as np

plt.figure(figsize=(20, 5))   #长20 宽5(英寸)
for i, imgs in enumerate(imgs[:20]):  #展示前20张图片
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))  #将图片转化为numpy数组,并将数组由(通道,高度,宽度)转化为(高度,宽度,通道)

    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

二、构建简单的CNN网络

特征提取➕分类

1. torch.nn.conv2d

二维卷积操作 ,用来提取图像等二位数据的特征。使用:F.covn2d

参数解释:

in_channels: 输入平面的数量,即通道数(RGB图像的通道数为3);

out_channels: 输出平面数量,使用多少卷积核输出特征矩阵的深度就是多少(也是卷积核数量);

kernel_size: 卷积核大小,(高度,宽度);

stride: 卷积核的步长,(高度,宽度)(默认1);

padding: 输入数据周围填充0的数量(默认0即不填充);

dilation: 卷积核元素之间的间距(默认1);

groups: 用于控制分组卷积的组数(默认1);

bias: 是否使用偏置;

padding_mode: 填充模式(默认使用0填充)

2. torch.nn.Linear

全连接层,传递和变换信息

用于将输入数据(通常是张量)乘以一个权重矩阵。权重矩阵的形状为 [out_features, in_features];如果设置了偏置项,则将乘法的结果加上一个偏置向量。偏置向量的形状为[out_features]

参数解释:

in_features: 输入特征数量

out_features: 输出特征数量

bias: 是否在全连接层中使用偏置项(默认为True 使用)

3. torch.nn.MaxPool2d

二维最大池化操作,用来降低特征图空间维度以减少计算量和复杂度,使用:F.max_pool2d()

kernel_size: 池化核大小,(高度,宽度);

stride: 池化核步长;

padding: 输入数据周围填充0的数量(默认0 即不填充);

dilation: 池化核之间间距(默认1);

return_indices: 是否返回池化后最大值的索引,False则只返回最大值 不返回其索引;

ceil_mode: 计算输出形状是否向上取整,False则向下取整

4. 卷积层、池化层的计算

卷积输出shape计算公式为:

(输入大小-卷积核数+1*padding数)/步长+1

如:输入为7*7,kernel为3*3,步长为2,padding为0,则输出为:(7-3+2*0)/2+1  3*3

池化输出shape计算公式为:

(输入大小+2*padding数-间距*(池化核大小-1)-1)/步长+1

使用3个卷积层和3个最大池化层,用于特征提取。然后通过两个全连接层进行分类:

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

使用torchinfosummary生成模型的摘要信息。使用.to(device)将模型转移到GPU中进行运行。summary(model)打印模型摘要信息:

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

三、训练模型

1. 设置超参数

设置交叉熵损失函数和随机梯度下降的优化器:

loss_fn = nn.CrossEntropyLoss() # 创建损失函数(交叉熵损失函数)
learn_rate = 1e-2 # 学习率为0.01
opt = torch.optim.SGD(model.parameters(),lr=learn_rate) #随机梯度下降

2. 编写训练函数

获取数据集大小

获取数据加载器大小

初始化训练损失和正确率

使用循环读取数据加载器中的每个批次,每读取一个批次,先将它转移到GPU上;

使用model前向传播 得到pred--计算损失loss;

反向传播:optimizer.zero_grad()将梯度归零--loss.backward()进行反向传播,计算梯度--通过调用optimizer.step()更新模型的参数。

训练准确率和训练损失分别除以训练集大小和批次数目,输出平均准确率和平均损失。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

 3. 编写测试函数

评估模型在给定数据集上的性能

这一步不需要进行梯度下降更新网络权重,故不需要传入优化器

获取测试集的大小

获取批次数目

torch.no_grad()停止梯度更新,节省计算内存消耗

 使用模型对图像进行预测--得到目标预测值target_pred;

使用损失函数计算预测值与目标值之间的损失loss;

每批次损失加到test_loss中,并将每批次准确加到test_acc中--test_acc除以测试集大小,test_loss除以批次数目,输出平均准确率和平均损失。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

训练和评估

指定epochs,即迭代次数

初始化了四个列表存储每个epoch的训练损失、训练准确率、测试损失和测试准确率;

在每个epoch中:

——调用train函数进行训练,传入训练数据加载器(train_dl)、模型(model)、损失函数(loss_fn)和优化器(opt)-- 返回该次训练准确率和训练损失;

——调用test函数进行测试,传入测试数据加载器(test_dl)、模型(model)和损失函数(loss_fn)-- 返回该次测试准确率和测试损失;

打印每个epoch的训练准确率、训练损失、测试准确率和测试损失

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

四、数据可视化

绘制训练集和验证集的准确率 及 损失 曲线:

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值