🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/rbOOmire8OocQ90QM78DRA) 中的学习记录博客
🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)
一、前期准备
1. 导入数据集
下载数据集,并存储到data目录:
train_ds = torchvision.datasets.CIFAR10('data',
train=True,
transform=torchvision.transforms.ToTensor(), # 将图像数据转化为Pytorcvh张量(Tensor)
download=True)
test_ds = torchvision.datasets.CIFAR10('data',
train=False,
transform=torchvision.transforms.ToTensor(), # 将图像数据转化为Pytorcvh张量(Tensor)
download=True)
DataLoader是一个数据加载器,将数据集分批次进行训练和测试,batch_size为每批次取出的样本大小,shuffle表示在每个epoch开始时将训练集打乱
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size)
从train_dl中取出一个批次查看
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape
shape为批次大小、通道数、宽度、高度(RGB图像通道数通常为3)
2. 可视化
import numpy as np
plt.figure(figsize=(20, 5)) #长20 宽5(英寸)
for i, imgs in enumerate(imgs[:20]): #展示前20张图片
# 维度缩减
npimg = imgs.numpy().transpose((1, 2, 0)) #将图片转化为numpy数组,并将数组由(通道,高度,宽度)转化为(高度,宽度,通道)
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.subplot(2, 10, i+1)
plt.imshow(npimg, cmap=plt.cm.binary)
plt.axis('off')
二、构建简单的CNN网络
特征提取➕分类
1. torch.nn.conv2d
二维卷积操作 ,用来提取图像等二位数据的特征。使用:F.covn2d
参数解释:
in_channels: 输入平面的数量,即通道数(RGB图像的通道数为3);
out_channels: 输出平面数量,使用多少卷积核输出特征矩阵的深度就是多少(也是卷积核数量);
kernel_size: 卷积核大小,(高度,宽度);
stride: 卷积核的步长,(高度,宽度)(默认1);
padding: 输入数据周围填充0的数量(默认0即不填充);
dilation: 卷积核元素之间的间距(默认1);
groups: 用于控制分组卷积的组数(默认1);
bias: 是否使用偏置;
padding_mode: 填充模式(默认使用0填充)
2. torch.nn.Linear
全连接层,传递和变换信息
用于将输入数据(通常是张量)乘以一个权重矩阵。权重矩阵的形状为 [out_features, in_features];
如果设置了偏置项,则将乘法的结果加上一个偏置向量。偏置向量的形状为[out_features]
。
参数解释:
in_features: 输入特征数量
out_features: 输出特征数量
bias
: 是否在全连接层中使用偏置项(默认为True 使用)
3. torch.nn.MaxPool2d
二维最大池化操作,用来降低特征图空间维度以减少计算量和复杂度,使用:F.max_pool2d()
kernel_size: 池化核大小,(高度,宽度);
stride: 池化核步长;
padding: 输入数据周围填充0的数量(默认0 即不填充);
dilation: 池化核之间间距(默认1);
return_indices: 是否返回池化后最大值的索引,False则只返回最大值 不返回其索引;
ceil_mode: 计算输出形状是否向上取整,False则向下取整
4. 卷积层、池化层的计算
卷积输出shape计算公式为:
(输入大小-卷积核数+1*padding数)/步长+1
如:输入为7*7,kernel为3*3,步长为2,padding为0,则输出为:(7-3+2*0)/2+1 3*3
池化输出shape计算公式为:
(输入大小+2*padding数-间距*(池化核大小-1)-1)/步长+1
使用3个卷积层和3个最大池化层,用于特征提取。然后通过两个全连接层进行分类:
import torch.nn.functional as F
num_classes = 10 # 图片的类别数
class Model(nn.Module):
def __init__(self):
super().__init__()
# 特征提取网络
self.conv1 = nn.Conv2d(3, 64, kernel_size=3) # 第一层卷积,卷积核大小为3*3
self.pool1 = nn.MaxPool2d(kernel_size=2) # 设置池化层,池化核大小为2*2
self.conv2 = nn.Conv2d(64, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool3 = nn.MaxPool2d(kernel_size=2)
# 分类网络
self.fc1 = nn.Linear(512, 256)
self.fc2 = nn.Linear(256, num_classes)
# 前向传播
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3(x)))
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
使用torchinfo
的summary
生成模型的摘要信息。使用.to(device)
将模型转移到GPU中进行运行。summary(model)
打印模型摘要信息:
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)
summary(model)
三、训练模型
1. 设置超参数
设置交叉熵损失函数和随机梯度下降的优化器:
loss_fn = nn.CrossEntropyLoss() # 创建损失函数(交叉熵损失函数)
learn_rate = 1e-2 # 学习率为0.01
opt = torch.optim.SGD(model.parameters(),lr=learn_rate) #随机梯度下降
2. 编写训练函数
获取数据集大小
获取数据加载器大小
初始化训练损失和正确率
使用循环读取数据加载器中的每个批次,每读取一个批次,先将它转移到GPU上;
使用model前向传播 得到pred--计算损失loss;
反向传播:optimizer.zero_grad()
将梯度归零--loss.backward()
进行反向传播,计算梯度--通过调用optimizer.step()
更新模型的参数。
训练准确率和训练损失分别除以训练集大小和批次数目,输出平均准确率和平均损失。
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3. 编写测试函数
评估模型在给定数据集上的性能
这一步不需要进行梯度下降更新网络权重,故不需要传入优化器
获取测试集的大小
获取批次数目
torch.no_grad()
停止梯度更新,节省计算内存消耗
使用模型对图像进行预测--得到目标预测值target_pred;
使用损失函数计算预测值与目标值之间的损失loss;
每批次损失加到test_loss
中,并将每批次准确加到test_acc
中--test_acc
除以测试集大小,test_loss
除以批次数目,输出平均准确率和平均损失。
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4. 正式训练
训练和评估
指定epochs,即迭代次数
初始化了四个列表存储每个epoch的训练损失、训练准确率、测试损失和测试准确率;
在每个epoch中:
——调用train函数进行训练,传入训练数据加载器(train_dl)、模型(model)、损失函数(loss_fn)和优化器(opt)-- 返回该次训练准确率和训练损失;
——调用test函数进行测试,传入测试数据加载器(test_dl)、模型(model)和损失函数(loss_fn)-- 返回该次测试准确率和测试损失;
打印每个epoch的训练准确率、训练损失、测试准确率和测试损失
epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
四、数据可视化
绘制训练集和验证集的准确率 及 损失 曲线:
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()