一、数组的保存
1、保存一个数组
import numpy as np
# 创建一个数组
arr = np.arange(16).reshape((4,4))
# 保存
# save 以二进制形式来保存数组---保存的文件是以.npy为结尾的二进制文件
# 参数1 保存的文件路径+ 文件名称,可以省略文件名后缀
# 参数2 需要保存的数组
np.save("./arr",arr)
2、保存多个数组
import numpy as np
# 创建数组
arr1 = np.arange(16).reshape((4,4))
arr2 = np.array([1,2,3,4])
# 通过savez 来保存多个数组---默认保存的是以.npz为结尾的二进制文件
# 参数1 是保存的路径+ 名称,后缀名可以省略
np.savez("./arr",arr1,arr2)
print("保存完成")
3、保存成文本形式
import numpy as np
# 创建一个数组
arr1 = np.arange(16).reshape((4, 4))
# 保存
np.savetxt("./arr.csv", arr1, fmt="%d", delimiter=',')
print("保存完成")
二、数组的读取
1、读取.npy 文件
读取的时候必须指定后缀名
arr = np.load("./arr.npy")
print("加载完成")
print("arr :\n",arr)
2、加载数组
data = np.load("./arr.npz") # data 是以键值对形式存储的
print(data)
for tmp in data:
print(tmp) # 键名
print(data[tmp]) # 可以通过字典的取值形式来获取 数组
3、加载文本形式的数组
data = np.loadtxt("./arr.txt",dtype=int,delimiter=' ')
print("加载完成")
print(data)
4、可以读取结构化数组和缺失数据
# filling_values 指定你缺失的时候填充的数据
data = np.genfromtxt("./arr.txt",dtype=int,delimiter=' ',filling_values='-1')
print("加载完成")
print(data)