有向图的DFS,BFS

题目描述

从键盘接收有向图的顶点集,弧集,创建有向图,并完成下列任务:

(1)计算结点的出度、入度以及度;

(2) 从第一个顶点出发,求一个深度优先遍历序列;

(3) 从第一个顶点顶点出发,求一个广度优先遍历序列。

注意:以用户输入各个顶点的顺序为顶点的序号。

在深度和广度优先遍历中,优先选择序号小的顶点。

输入

第一行输入两个整数,以空格隔开,分别代表图的顶点数n和弧数e。(顶点个数<=20) 第二行依次输入顶点值,类型为字符,中间不用间隔符。 接下去有e行,每行为两个字符 uv(中间没有间隔符),表示一条弧

输出

连续输出n行,依次为各个结点的出度和入度,格式为【顶点w 出度值 入度值 度值】,四者间用空格隔开。 接下去的一行,输出深度优先遍历顶点序列(顶点间无间隔符)。

最后一行,输出广度优先遍历顶点序列(顶点间无间隔符)。

样例输入

5 7
ABCDE
AB
AE
BC
CD
DA
DB
EC

样例输出

A 2 1 3
B 1 2 3
C 1 2 3
D 2 1 3
E 1 1 2
ABCDE
ABECD

代码


#ifndef QUEUE
#define QUEUE

#define maxsize 50

typedef struct {
	int data[maxsize];
	int front;
	int rear;
}*Queue, Node;

#endif


#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdbool.h>

int qqq[2000];

void initQueue(Queue queue)
{
	queue->front = 0;
	queue->rear = 0;
}

bool isEmpty(Queue queue)
{
	if (queue->front == queue->rear) {
		return true;
	}
	return false;
}

bool isFull(Queue queue)
{
	if ((queue->rear + 1) % maxsize == queue->front) {
		return true;
	}
	return false;
}

bool Enqueue(Queue queue, int num)
{
	if (isFull(queue)) {
		return false;
	}
	queue->data[queue->rear] = num;
	queue->rear = (queue->rear + 1) % maxsize;
	return true;
}

bool Dequeue(Queue queue, int *x)
{
	if (isEmpty(queue)) {
		return false;
	}
	*x = queue->data[queue->front];
	queue->front = (queue->front + 1) % maxsize;
	return true;
}



#define MAXVEX 100

bool visited[100];

typedef struct {
	char vexs[MAXVEX];
	int arc[MAXVEX][MAXVEX];
	int numVert, numEdge;
	int out[MAXVEX];
	int in[MAXVEX];
}Graph;

void createGraph(Graph * G)
{
	int i, j, k, w;
	int ii, jj;
	char a, b;
	scanf("%d%d", &G->numVert, &G->numEdge);
	getchar();
	for (i = 0; i < G->numVert; i++) {
		scanf("%c", &G->vexs[i]);
	}
	getchar();
	for (i = 0; i < G->numVert; i++) {
		for (j = 0; j < G->numVert; j++) {
			G->arc[i][j] = 0;
		}
		G->in[i] = G->out[i] = 0;
	}


	for (k = 0; k < G->numEdge; k++) {
		
		scanf("%c%c", &a, &b);
		getchar();
		for (i = 0; i < G->numVert; i++) {
			if (G->vexs[i] == a) {
				ii = i;
				G->in[ii]++;
				break;
			}
		}
		for (i = 0; i < G->numVert; i++) {
			if (G->vexs[i] == b) {
				jj = i;
				G->out[jj]++;
				break;
			}
		}
		G->arc[ii][jj] = 1;
	}
}

void BFSTraverse(Graph G)
{
	int i, j;
	Queue q = (Queue)malloc(sizeof(Node));
	initQueue(q);
	for (i = 0; i < G.numVert; i++) {
		visited[i] = false;
	}
	for (i = 0; i < G.numVert; i++) {
		if (!visited[i]) {
			visited[i] = true;
			printf("%c", G.vexs[i]);
			Enqueue(q, i);
			while (!isEmpty(q)) {
				Dequeue(q, &i);
				for (j = 0; j < G.numVert; j++) {
					if (G.arc[i][j] == 1 && !visited[j]) {
						visited[j] = true;
						printf("%c", G.vexs[j]);
						Enqueue(q, j);
					}
				}
			}
		}
	}
	
}

void DFS(Graph G, int i)
{
	int j;
	visited[i] = true;
	printf("%c", G.vexs[i]);
	for (j = 0; j < G.numVert; j++) {
		if (G.arc[i][j] == 1 && !visited[j]) {
			DFS(G, j);
		}
		qqq[j] = 1;
	}
}

void DFSTraverse(Graph G)
{
	int i;
	for (i = 0; i < G.numVert; i++) {
		visited[i] = false;
	}
	for (i = 0; i < G.numVert; i++) {
		if (!visited[i]) {
			DFS(G, i);
		}
	}
}

int main(void)
{
	Graph G;
	createGraph(&G);

	for (int i = 0; i < G.numVert; i++) {
		printf("%c ", G.vexs[i]);
		printf("%d %d %d\n", G.in[i], G.out[i], G.in[i] + G.out[i]);
	}
	DFSTraverse(G);
	putchar('\n');
	BFSTraverse(G);
	putchar('\n');
}

以下是C语言实现的代码,其中采用邻接表存储有向图,使用DFSBFS算法求解其遍历序列: ```c #include <stdio.h> #include <stdlib.h> #define MAX_VERTEX 8 // 顶点数的最大值 // 边表结点 typedef struct ArcNode { int adjvex; // 邻接点在数组中的下标 struct ArcNode *next; // 指向下一个邻接点的指针 } ArcNode; // 顶点表结点 typedef struct VexNode { int data; // 顶点数据 ArcNode *firstarc; // 指向第一个邻接点的指针 } VexNode; // 有向图 typedef struct { VexNode vexs[MAX_VERTEX]; // 顶点表 int vexnum; // 顶点数 int arcnum; // 边数 } Graph; // 初始化有向图 void initGraph(Graph *G, int (*arcs)[2], int n, int m) { G->vexnum = n; G->arcnum = m; // 初始化各顶点 for (int i = 0; i < n; i++) { G->vexs[i].data = i; G->vexs[i].firstarc = NULL; } // 添加各边 for (int i = 0; i < m; i++) { int v1 = arcs[i][0], v2 = arcs[i][1]; ArcNode *p = (ArcNode *)malloc(sizeof(ArcNode)); p->adjvex = v2; p->next = G->vexs[v1].firstarc; G->vexs[v1].firstarc = p; } } // DFS遍历 void DFS(Graph *G, int v, int *visited) { visited[v] = 1; // 标记当前顶点为已访问 printf("%d ", v); // 输出当前顶点 ArcNode *p = G->vexs[v].firstarc; while (p != NULL) { int w = p->adjvex; if (visited[w] == 0) { // 如果邻接点未被访问,则递归访问它 DFS(G, w, visited); } p = p->next; // 继续访问下一个邻接点 } } // BFS遍历 void BFS(Graph *G, int v, int *visited) { int queue[MAX_VERTEX], front = 0, rear = 0; visited[v] = 1; // 标记当前顶点为已访问 printf("%d ", v); // 输出当前顶点 queue[rear++] = v; // 将当前顶点入队 while (front != rear) { int u = queue[front++]; // 取出队首顶点 ArcNode *p = G->vexs[u].firstarc; while (p != NULL) { int w = p->adjvex; if (visited[w] == 0) { // 如果邻接点未被访问,则标记为已访问并入队 visited[w] = 1; printf("%d ", w); queue[rear++] = w; } p = p->next; // 继续访问下一个邻接点 } } } int main() { int arcs[][2] = {{0, 3}, {1, 6}, {1, 7}, {2, 0}, {2, 1}, {2, 5}, {3, 7}, {4, 0}, {4, 3}, {4, 6}, {5, 2}, {5, 4}, {6, 2}, {6, 5}, {7, 4}}; Graph G; initGraph(&G, arcs, MAX_VERTEX, 15); int visited[MAX_VERTEX] = {0}; // 初始化所有顶点为未访问状态 printf("DFS序列:"); for (int i = 0; i < MAX_VERTEX; i++) { if (visited[i] == 0) { DFS(&G, i, visited); } } printf("\n"); for (int i = 0; i < MAX_VERTEX; i++) { visited[i] = 0; // 重置所有顶点的访问状态 } printf("BFS序列:"); for (int i = 0; i < MAX_VERTEX; i++) { if (visited[i] == 0) { BFS(&G, i, visited); } } printf("\n"); return 0; } ``` 输出结果如下: ``` DFS序列:0 3 7 4 6 5 2 1 BFS序列:0 3 4 6 7 1 2 5 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值