
机器学习
文章平均质量分 94
余生最年轻
数学专业的小虾米
博客为自己总结与网上搜集资料而得,如有侵权,请联系删除。
展开
-
python的DataFrame,Series
一、DataFrame初始化1.1 通过字典初始化字典的键对应列名,键的值对应列的值。每个键应的值应该是一个list,如果键对应的值只是一个值而不是一个list,就这个列的所有值都是这个键对应的值。注意所有list的长度应该一样,不能一个list都没有。d={'a':[1,2,3],'b':[3,3,2],'m':9}DataFrame(d)Out[55]: a b m0 1...转载 2018-07-08 20:01:03 · 1368 阅读 · 0 评论 -
贝叶斯线性回归
摘要:关键字:共轭先验,贝叶斯估计的增量学习,极大似然估计,最大后验估计1.最大似然估计 1.推导过程 考虑有N个样本X,每个样本都是m维的,所以这是一个m类的问题。第i类服从分布,这里的i=1,2,...,m。假设各个样本相互独立,并且各类的参数不相互影响,每个类都服从高斯分布。所以每类的形式已知,只是参数(均值和方差)未知。假设对某一类,联合概率密度函数为,seta代表与...转载 2018-06-11 12:05:34 · 9095 阅读 · 1 评论 -
Ridge Regression
daixie转载 2018-06-11 10:26:01 · 2767 阅读 · 0 评论 -
支持向量机SVM
关键字:总结:SVM是一个分类问题,是监督式学习(详见前面的微博:机器学习算法总结)。例子:from吴恩达的机器学习视频,肿瘤大小与是否患病的例子...转载 2018-06-11 08:56:33 · 919 阅读 · 0 评论 -
机器学习算法总结
机器学习算法总结1.监督式学习 数据被打上标记,不断训练数据的过程。获取由自变量到因变量的模型,不断对这个模型训练,直到该模型可以较为准确的描述自变量到因变量的变化情况。 常见算法:回归模型,决策树,随机森林,K邻近算法,逻辑回归等。 例子:垃圾邮件分类,每个邮件都被标识是否为垃圾邮件。2.无监督式学习 数据没有标记,无监督式学习在学习时并不知道其分类结果是否正确,亦不知道...转载 2018-06-09 21:54:16 · 1153 阅读 · 0 评论 -
python.sklearn.gaussian_process高斯过程回归的调用
代码来源:http://f.dataguru.cn/thread-878564-1-1.html(土匪加步枪)侵删因为最近在做GPR和Bayesian optimization,需要调用python相关库,于是上网找了网友的代码参考,感谢蓝色部分为我的查阅资料内容,是对GPR相关方法的解读,可以直接当成注释看# -*- coding: utf-8 -*-#高斯过程回归,首先要判断,所求的是否满足正...转载 2018-05-13 17:08:04 · 26511 阅读 · 3 评论 -
高斯核函数
来源: http://blog.163.com/jia_huiqiang/blog/static/27421002120178734639912/ 关键字:RBF 超参数调优在支持向量机(以下简称SVM)的核函数中,高斯核(以下简称RBF)是最常用的,从理论上讲, RBF一定不比线性核函数差,但是在实际应用中,却面临着几个重要的超参数的调优问题。如果调的不好,可能比线性核函数还要差。所以我们实际应...转载 2018-05-13 11:00:15 · 1477 阅读 · 0 评论 -
贝叶斯优化 Bayesian Optimization
关键字:提取函数aquisition function,熵,响应曲面简介:所谓优化,实际上就是一个求极值的过程,数据科学的很多时候就是求极值的问题。那么怎么求极值呢?很显然,很容易想到求导数,这是一个好方法,但是求导即基于梯度的优化的条件是函数形式已知才能求出导数,并且函数要是凸函数才可以。然而实际上很多时候是不满足这两个条件的,所以不能用梯度优化,贝叶斯优化应运而生了。 贝叶斯优化...原创 2018-07-02 22:28:06 · 34994 阅读 · 14 评论 -
高斯过程回归GPR
关键字:核函数,RBF超参数调优对这个很熟悉了,简单写一下本人用matlab实现了一下:https://download.csdn.net/download/qq_40597317/10646888可以参考论文阅读。一、GP是干什么的已知n个点的(x,y),想知道在任意一个新的点Xn+1,对应的Yn+1是怎么样的。可以用来进行贝叶斯优化。二、基本思想因为高斯分布在...原创 2018-07-02 20:12:18 · 45047 阅读 · 14 评论