题目描述
- 搜索二维矩阵
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例 2:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false
题目地址: https://leetcode-cn.com/problems/search-a-2d-matrix/
解题思路
本题的意思就是 给定一个排序好的 二维数组,给定一个目标值 ,判断目标值是否存在这个数组中,存在 返回 true,不存在 返回false。
如果数组没有顺序,是乱序的话,那么只能从头到尾 来遍历二维数组,去一个个进行比较判断,现在 这个二维数组是排好序的,很容易想到 使用二分查找。
二分法搜索: 先取一个中间值 ,去判断 目标值和中间值的大小关系,如果小于中间值 ,再去对 最小值和中间值之间的数据进行 之前的操作,如果大于中间值,就 对中间值和 最大值 之间的数值 来重复之前操作。
本题就是对二分法进行一下处理, 先对二维数组进行二分法,判断出 在那一个一维数组中,然后在使用二分法就可以了
实现代码
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int arr_start = 0;
int arr_end = matrix.length-1;
while(arr_start<arr_end){
int index = (arr_start+arr_end)/2;
if(target >= matrix[index][0] && target<=matrix[index][matrix[index].length-1] ){
return search(target,matrix[index]);
}else if( target< matrix[index][0]){
arr_end = index-1;
}else if(target> matrix[index][matrix[index].length-1]){
arr_start = index+1;
}
}
if(target>=matrix[arr_start][0] && target<= matrix[arr_start][matrix[arr_start].length-1] ){
return search(target,matrix[arr_start]);
}
return false;
}
//普通 二分法实现
public boolean search(int target,int[] arr){
int start = 0;
int end = arr.length-1;
while(start<=end && target>=arr[start] && target<=arr[end]){
int index = (start+end)/2;
if(target==arr[index] || target==arr[start] || target==arr[end]){
return true;
}else if(target<arr[index]){
end = index-1;
}else if(target>arr[index]){
start = index+1;
}
}
return false;
}
}