图解:什么是AVL树?

本文介绍了AVL树的概念,它是一种自平衡二叉搜索树,确保任意节点的左右子树高度差不超过1。文章通过图解详细阐述了插入过程中可能遇到的四种旋转情况:左左、右右、左右、右左,帮助读者理解AVL树如何保持平衡。最后指出,虽然AVL树解决了查询效率问题,但插入和删除操作的效率不高,实际应用中常被红黑树取代。

 

本文绝对干货,食用时间约8分钟,建议细品!

 

 

引子

上一次我给大家介绍了什么是二叉搜索树,但是由于二叉搜索树查询效率的不稳定性,所以很少运用在实际的场景中,所以我们伟大的前人就对二叉搜索树进行了改良,发明了AVL树。

 

AVL树是一种自平衡二叉搜索树,因为AVL树任意节点的左右子树高度差的绝对值不超过1,所以AVL树又被称为高度平衡树。

 

AVL树本质上是一棵带有平衡条件的二叉搜索树,它满足二叉搜索树的基本特性,所以本次主要介绍AVL树怎么自平衡,也就是理解它的旋转过程。

 

二叉搜索树特性忘了的小伙伴可以看之前的文章:搞定二叉搜索树,9图足矣!同时我也将基本性质给大家再回顾一遍:

  1. 若它的左子树不为空,则左子树上所有节点的值均小于根节点的值。

  2. 若它的右子树不为空,则右子树上所有节点的值均大于根节点的值。

  3. 它的左、右子树也分别为二叉搜索树。

 

平衡条件:每个节点的左右子树的高度差的绝对值不超过1。

 

我们将每个节点的左右子树的高度差的绝对值又叫做平衡因子。

 

AVL树的旋转行为一般是在插入和删除过程中才发生的,因为插入过程中的旋转相比于删除过程的旋转而言更加简单和直观,所以我给大家图解一下AVL树的插入过程。

 

插入过程

最开始的时候为空树,没有任何节点,所以我们直接用数据构造一个节点插入就好了,比如第一个要插入的数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值