目录
由于后面要进行图片的分割,所以就先做了一些准备。
要分割的图片如下:
分割
思路也比较简单,代码注释比较详细,看代码就行。
from cv2 import cv2
import numpy as np
import os
pic_path = '.jpg' # 分割的图片的位置
pic_target = './result/' # 分割后的图片保存的文件夹
if not os.path.exists(pic_target): #判断是否存在文件夹如果不存在则创建为文件夹
os.makedirs(pic_target)
#要分割后的尺寸
cut_width = 512
cut_length = 512
# 读取要分割的图片,以及其尺寸等数据
picture = cv2.imread(pic_path)
(width, length, depth) = picture.shape
# 预处理生成0矩阵
pic = np.zeros((cut_width, cut_length, depth))
# 计算可以划分的横纵的个数
num_width = int(width / cut_width)
num_length = int(length / cut_length)
# for循环迭代生成
for i in range(0, num_width):
for j in range(0, num_length):
pic = picture[i*cut_width : (i+1)*cut_width, j*cut_length : (j+1)*cut_length, :]
result_path = pic_target + '{}_{}.jpg'.format(i+1, j+1)
cv2.imwrite(result_path, pic)
print("done!!!")
效果如下:
拼接
有了分割好的图片之后,后面可能还要进行拼接,拼接相对复杂一些。
代码如下:
from cv2 import cv2
import numpy as np
import os
# 分割后的图片的文件夹,以及拼接后要保存的文件夹
pic_path = '/result/'
pic_target = 'picture/'
# 数组保存分割后图片的列数和行数,注意分割后图片的格式为x_x.jpg,x从1开始
num_width_list = []
num_lenght_list = []
# 读取文件夹下所有图片的名称
picture_names = os.listdir(pic_path)
if len(picture_names)==0:
print("没有文件")
else:
# 获取分割后图片的尺寸
img_1_1 = cv2.imread(pic_path + '1_1.jpg')
(width, length, depth) = img_1_1.shape
# 分割名字获得行数和列数,通过数组保存分割后图片的列数和行数
for picture_name in picture_names:
num_width_list.append(int(picture_name.split("_")[0]))
num_lenght_list.append(int((picture_name.split("_")[-1]).split(".")[0]))
# 取其中的最大值
num_width = max(num_width_list)
num_length = max(num_lenght_list)
# 预生成拼接后的图片
splicing_pic = np.zeros((num_width*width, num_length*length, depth))
# 循环复制
for i in range(1, num_width+1):
for j in range(1, num_length+1):
img_part = cv2.imread(pic_path + '{}_{}.jpg'.format(i, j))
splicing_pic[width*(i-1) : width*i, length*(j-1) : length*j, :] = img_part
# 保存图片,大功告成
cv2.imwrite(pic_target + 'result.jpg', splicing_pic)
print("done!!!")
拼接后的效果图如下:
注意:分割和代码采用文中的分割代码,拼接才能成功,或者保持相同的命名方式。