Java数据结构--图

一、概述

图是一种数据结构,其中节点可以具有零个或多个相邻元素。两个节点之间的连接称为边,节点也可也以称为顶点

1. 图的常用概念

在这里插入图片描述

2. 图的表示方式

2.1 邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是row和col表示的1……n个点
在这里插入图片描述

2.2 邻接表
  1. 邻接矩阵需要为每个顶点分配n个边的空间,很多边都不会存在,会造成空间的浪费
  2. 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
    在这里插入图片描述
    说明
  • 标号为0的节点的相关联的节点为1,2,3,4
  • 标号为1的节点的相关联节点为0,4
  • 标号为2的相关联节点为0,4,5
  • ……

二、图的创建

import java.util.ArrayList;
import java.util.Arrays;

/**
 * @author DELL
 * @Date 2020/2/15 17:12
 **/
public class GraphDemo {
    public static void main(String[] args) {
        Graph graph = new Graph(5);
        String[] vertex = {"A", "B", "C", "D", "E"};
        for (String s : vertex) {
            graph.insertVertex(s);
        }
        //添加边
        graph.insertEdges(0, 1, 1);//A-B
        graph.insertEdges(0, 2, 1);
        graph.insertEdges(1, 2, 1);
        graph.insertEdges(1, 3, 1);
        graph.insertEdges(1, 4, 1);

        graph.showGraph();
    }
}

class Graph {
    private ArrayList<String> vertexList;
    private int[][] edges;
    private int numOfEdges;

    public Graph(int n) {
        edges = new int[n][n];
        vertexList = new ArrayList<>(n);
        numOfEdges = 0;
    }

    //打印出邻接矩阵
    public void showGraph() {
        for (int[] link : edges) {
            System.out.println(Arrays.toString(link));
        }
    }

    /**
     * 插入节点
     *
     * @param vertex
     */
    public void insertVertex(String vertex) {
        vertexList.add(vertex);
    }

    /**
     * 插入边
     *
     * @param v1     第一个顶点
     * @param v2     第二个顶点
     * @param weight 权值
     */
    public void insertEdges(int v1, int v2, int weight) {
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        numOfEdges++;
    }
}

三、图的遍历

图的遍历就是对图的访问。一个图有多个节点,如何遍历这些节点需要特定策略,一般有两种访问策略:深度优先遍历和广度优先遍历

1. 深度优先遍历

1.1 概述
  • 从初始访问节点出发,初始访问节点可能有多个邻接节点,深度优先遍历是首先访问第一个邻接节点,然后再以这个被访问的邻接节点为初始节点,访问它的第一个邻接节点。可以理解为:每次都在访问当前节点后首先访问当前节点的第一个邻接节点

  • 这样的访问策略是优先纵向挖掘深入,而不是对每个节点进行横向访问

  • 深度优先搜索是一个递归的过程

    1.2 算法步骤
  1. 访问初始节点v,并标记节点v为已访问
  2. 查找节点v的第一个邻接节点w
  3. 若w存在,则继续实行4,如果w不存在,则回到第一步,将从v的下一个节点继续查找
  4. 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)
  5. 查找节点v的w邻接节点的下一个邻接节点,转到步骤3
1.3 代码演示
class Graph {
    private ArrayList<String> vertexList;
    private int[][] edges;
    private int numOfEdges;
    private boolean[] isVisited;

    public Graph(int n) {
        edges = new int[n][n];
        vertexList = new ArrayList<>(n);
        numOfEdges = 0;
        isVisited = new boolean[n];
    }

    /**
     * 判断它的邻接节点
     *
     * @param index 需要查找的下标
     * @return
     */
    public int getFirstNeighbor(int index) {
        for (int i = 0; i < vertexList.size(); i++) {
            if (edges[index][i] > 0) {
                return i;
            }
        }
        return -1;
    }

    /**
     * 根据前一个邻接节点的下标获取下一个邻接节点
     *
     * @param v1
     * @param v2
     * @return
     */
    public int getNextNeighbor(int v1, int v2) {
        for (int i = v2 + 1; i < vertexList.size(); i++) {
            if (edges[v1][i] > 0) {
                return i;
            }
        }
        return -1;
    }

    /**
     * 深度优先遍历
     *
     * @param isVisited 标记是否被访问过的数组
     * @param i         开始访问的下标
     */
    private void dfs(boolean[] isVisited, int i) {
        //首先访问该节点
        System.out.print(getValueByIndex(i) + "->");
        //将节点标记为已访问
        isVisited[i] = true;
        //查找节点i的跪一个邻接节点
        int w = getFirstNeighbor(i);
        while (w != -1) {//说明有邻接节点
            if (!isVisited[w]) {
                dfs(isVisited, w);
            }
            //如果w节点被访问过
            w = getNextNeighbor(i, w);
        }
    }

    /**
     * 对dfs进行重载
     */
    public void dfs() {
        for (int i = 0; i < getNumOfVertex(); i++) {
            if (!isVisited[i]) {
                dfs(isVisited, i);
            }
        }
    }

    public int getNumOfVertex() {
        return vertexList.size();
    }
    
    public String getValueByIndex(int i) {
        return vertexList.get(i);
    }
}

2. 广度优先遍历

2.1 概述

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的节点的顺序,以便按这个顺序来访问这些节点的邻接节点

2.2 算法步骤
  1. 标记初始节点v并标记节点v为已访问
  2. 节点v入队列
  3. 当节点非空时,继续执行,否则算法结束
  4. 出队列,取得队头节点u
  5. 查找节点u的第一个邻接节点w
  6. 若节点u的邻接节点不存在,则转到步骤3:否则循环执行以下三个步骤:
    • 若节点w尚未被访问,则访问节点w并标记为已访问
    • 节点w入队列
    • 查找节点u的继w邻接节点后的下一个邻接节点w,转到步骤6
2.3 代码演示
class Graph {
    private ArrayList<String> vertexList;
    private int[][] edges;
    private int numOfEdges;
    private boolean[] isVisited;

    public Graph(int n) {
        edges = new int[n][n];
        vertexList = new ArrayList<>(n);
        numOfEdges = 0;
        isVisited = new boolean[n];
    }

    /**
     * 广度优先遍历
     *
     * @param isVisited 标记是否访问过
     * @param i         访问节点的下标
     */
    private void bfs(boolean[] isVisited, int i) {
        int u;//队列头节点对应下标
        int w;//邻接节点
        //队列,记录节点访问顺序
        LinkedList<Integer> queue = new LinkedList();
        System.out.print(getValueByIndex(i) + "=>");
        isVisited[i] = true;
        //将节点加入队列
        queue.addLast(i);
        while (!queue.isEmpty()) {
            //取出队列的头节点下标
            u = queue.removeFirst();
            //得到第一个邻接点的下标
            w = getFirstNeighbor(u);
            while (w != -1) {//找到了
                //是否访问过
                if (!isVisited[w]) {
                    System.out.print(getValueByIndex(w) + "=>");
                    isVisited[w] = true;
                    //入队列
                    queue.addLast(w);
                }
                w = getNextNeighbor(u, w);
            }
        }
    }

    public void bfs() {
        for (int i = 0; i < getNumOfVertex(); i++) {
            if (!isVisited[i]) {
                bfs(isVisited, i);
            }
        }
    }

    /**
     * 判断它的邻接节点
     *
     * @param index 需要查找的下标
     * @return
     */
    public int getFirstNeighbor(int index) {
        for (int i = 0; i < vertexList.size(); i++) {
            if (edges[index][i] > 0) {
                return i;
            }
        }
        return -1;
    }

    /**
     * 根据前一个邻接节点的下标获取下一个邻接节点
     *
     * @param v1
     * @param v2
     * @return
     */
    public int getNextNeighbor(int v1, int v2) {
        for (int i = v2 + 1; i < vertexList.size(); i++) {
            if (edges[v1][i] > 0) {
                return i;
            }
        }
        return -1;
    }

    public int getNumOfVertex() {
        return vertexList.size();
    }

    public int getNumOfEdges() {
        return numOfEdges;
    }

    public String getValueByIndex(int i) {
        return vertexList.get(i);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ysw!不将就

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值