图
一、概述
图是一种数据结构,其中节点可以具有零个或多个相邻元素。两个节点之间的连接称为边,节点也可也以称为顶点
1. 图的常用概念
2. 图的表示方式
2.1 邻接矩阵
邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是row和col表示的1……n个点
2.2 邻接表
- 邻接矩阵需要为每个顶点分配n个边的空间,很多边都不会存在,会造成空间的浪费
- 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
说明:
- 标号为0的节点的相关联的节点为1,2,3,4
- 标号为1的节点的相关联节点为0,4
- 标号为2的相关联节点为0,4,5
- ……
二、图的创建
import java.util.ArrayList;
import java.util.Arrays;
/**
* @author DELL
* @Date 2020/2/15 17:12
**/
public class GraphDemo {
public static void main(String[] args) {
Graph graph = new Graph(5);
String[] vertex = {"A", "B", "C", "D", "E"};
for (String s : vertex) {
graph.insertVertex(s);
}
//添加边
graph.insertEdges(0, 1, 1);//A-B
graph.insertEdges(0, 2, 1);
graph.insertEdges(1, 2, 1);
graph.insertEdges(1, 3, 1);
graph.insertEdges(1, 4, 1);
graph.showGraph();
}
}
class Graph {
private ArrayList<String> vertexList;
private int[][] edges;
private int numOfEdges;
public Graph(int n) {
edges = new int[n][n];
vertexList = new ArrayList<>(n);
numOfEdges = 0;
}
//打印出邻接矩阵
public void showGraph() {
for (int[] link : edges) {
System.out.println(Arrays.toString(link));
}
}
/**
* 插入节点
*
* @param vertex
*/
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
/**
* 插入边
*
* @param v1 第一个顶点
* @param v2 第二个顶点
* @param weight 权值
*/
public void insertEdges(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}
三、图的遍历
图的遍历就是对图的访问。一个图有多个节点,如何遍历这些节点需要特定策略,一般有两种访问策略:深度优先遍历和广度优先遍历
1. 深度优先遍历
1.1 概述
-
从初始访问节点出发,初始访问节点可能有多个邻接节点,深度优先遍历是首先访问第一个邻接节点,然后再以这个被访问的邻接节点为初始节点,访问它的第一个邻接节点。可以理解为:每次都在访问当前节点后首先访问当前节点的第一个邻接节点
-
这样的访问策略是优先纵向挖掘深入,而不是对每个节点进行横向访问
-
深度优先搜索是一个递归的过程
1.2 算法步骤
- 访问初始节点v,并标记节点v为已访问
- 查找节点v的第一个邻接节点w
- 若w存在,则继续实行4,如果w不存在,则回到第一步,将从v的下一个节点继续查找
- 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)
- 查找节点v的w邻接节点的下一个邻接节点,转到步骤3
1.3 代码演示
class Graph {
private ArrayList<String> vertexList;
private int[][] edges;
private int numOfEdges;
private boolean[] isVisited;
public Graph(int n) {
edges = new int[n][n];
vertexList = new ArrayList<>(n);
numOfEdges = 0;
isVisited = new boolean[n];
}
/**
* 判断它的邻接节点
*
* @param index 需要查找的下标
* @return
*/
public int getFirstNeighbor(int index) {
for (int i = 0; i < vertexList.size(); i++) {
if (edges[index][i] > 0) {
return i;
}
}
return -1;
}
/**
* 根据前一个邻接节点的下标获取下一个邻接节点
*
* @param v1
* @param v2
* @return
*/
public int getNextNeighbor(int v1, int v2) {
for (int i = v2 + 1; i < vertexList.size(); i++) {
if (edges[v1][i] > 0) {
return i;
}
}
return -1;
}
/**
* 深度优先遍历
*
* @param isVisited 标记是否被访问过的数组
* @param i 开始访问的下标
*/
private void dfs(boolean[] isVisited, int i) {
//首先访问该节点
System.out.print(getValueByIndex(i) + "->");
//将节点标记为已访问
isVisited[i] = true;
//查找节点i的跪一个邻接节点
int w = getFirstNeighbor(i);
while (w != -1) {//说明有邻接节点
if (!isVisited[w]) {
dfs(isVisited, w);
}
//如果w节点被访问过
w = getNextNeighbor(i, w);
}
}
/**
* 对dfs进行重载
*/
public void dfs() {
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
dfs(isVisited, i);
}
}
}
public int getNumOfVertex() {
return vertexList.size();
}
public String getValueByIndex(int i) {
return vertexList.get(i);
}
}
2. 广度优先遍历
2.1 概述
类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的节点的顺序,以便按这个顺序来访问这些节点的邻接节点
2.2 算法步骤
- 标记初始节点v并标记节点v为已访问
- 节点v入队列
- 当节点非空时,继续执行,否则算法结束
- 出队列,取得队头节点u
- 查找节点u的第一个邻接节点w
- 若节点u的邻接节点不存在,则转到步骤3:否则循环执行以下三个步骤:
- 若节点w尚未被访问,则访问节点w并标记为已访问
- 节点w入队列
- 查找节点u的继w邻接节点后的下一个邻接节点w,转到步骤6
2.3 代码演示
class Graph {
private ArrayList<String> vertexList;
private int[][] edges;
private int numOfEdges;
private boolean[] isVisited;
public Graph(int n) {
edges = new int[n][n];
vertexList = new ArrayList<>(n);
numOfEdges = 0;
isVisited = new boolean[n];
}
/**
* 广度优先遍历
*
* @param isVisited 标记是否访问过
* @param i 访问节点的下标
*/
private void bfs(boolean[] isVisited, int i) {
int u;//队列头节点对应下标
int w;//邻接节点
//队列,记录节点访问顺序
LinkedList<Integer> queue = new LinkedList();
System.out.print(getValueByIndex(i) + "=>");
isVisited[i] = true;
//将节点加入队列
queue.addLast(i);
while (!queue.isEmpty()) {
//取出队列的头节点下标
u = queue.removeFirst();
//得到第一个邻接点的下标
w = getFirstNeighbor(u);
while (w != -1) {//找到了
//是否访问过
if (!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
isVisited[w] = true;
//入队列
queue.addLast(w);
}
w = getNextNeighbor(u, w);
}
}
}
public void bfs() {
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
bfs(isVisited, i);
}
}
}
/**
* 判断它的邻接节点
*
* @param index 需要查找的下标
* @return
*/
public int getFirstNeighbor(int index) {
for (int i = 0; i < vertexList.size(); i++) {
if (edges[index][i] > 0) {
return i;
}
}
return -1;
}
/**
* 根据前一个邻接节点的下标获取下一个邻接节点
*
* @param v1
* @param v2
* @return
*/
public int getNextNeighbor(int v1, int v2) {
for (int i = v2 + 1; i < vertexList.size(); i++) {
if (edges[v1][i] > 0) {
return i;
}
}
return -1;
}
public int getNumOfVertex() {
return vertexList.size();
}
public int getNumOfEdges() {
return numOfEdges;
}
public String getValueByIndex(int i) {
return vertexList.get(i);
}
}