Divisors UVA - 294[唯一因式分解定理]

本题要找的是n到m的所有整数中,因数最多那个数,并输出其有几个因数。

这里我们要知道的是,每个正整数(1除外)都可以被分解为素数之积。 这其实在做素数的筛法中就可以发现,每个数都会被这个数之前的素数的积筛出来,那也就说明正整数由素数本身,(一个或多个)素数的积,和1组成。

这又叫唯一因式分解

下附一张分解式的图,来源百度文库共享文档

那么对于本题,我们要做的就是枚举(√ ̄100000000)以内的素数,确保组成范围数字的素数能全部枚举到。  然后暴力对n到m间的数字求因数找最大值。因数个数= (每个素数因子个数+1)的积

代码

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include <algorithm>
using namespace std;
const long N = 40000;
long prime[N] = {0},num_prime = 0;
int isNotPrime[N] = {1, 1};

int main(){
	int T,n,m;
	//素数筛 
	for(long i = 2 ; i < N ; i ++){
	if(! isNotPrime[i])
 		prime[num_prime ++]=i;
		for(long j = 0 ; j < num_prime && i * prime[j] <  N ; j ++){
	        isNotPrime[i * prime[j]] = 1;
	  		if( !(i % prime[j] ) )
				break;
		}
	}
	//
	scanf("%d",&T);
	while(T--){
		scanf("%d %d",&n,&m);
		int Max=0,site=1;
		for(int i=n;i<=m;i++){
			int temp=i,ans=1;
			
			for(int j=0;j<num_prime;j++){
				int CiFang=1;
				while(!(temp%prime[j])){
					temp/=prime[j];
					CiFang++;
				}
				//printf("i=%d temp=%d prime=%d cifang=%d\n",i,temp,prime[j],CiFang);
				ans*=CiFang;
				if(temp==1)
					break;
			}
			if(ans>Max){
				Max=ans;
				site=i;
			}
				
				//printf("Max=%d\n",Max);
		}

		printf("Between %d and %d, %d has a maximum of %d divisors.\n",n,m,site,Max);
	} 
	
	
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值