文章目录
1. torch - torchvision - python 版本对应关系
从表中可以看出,在使用 anaconda 创建虚拟环境时,将 python 的版本定为 3.7 最为合适,当然最好还是根据你自己的需要选择 python 版本。
conda create -n 环境的名字 python=3.7
2. CUDA Toolkit 和PyTorch的对应关系
3. 安装说明
3.1 用 anaconda 安装 pytorch
anaconda 新建虚拟环境后,直接在 pytorch 官网官网链接 找到 “Install” 按钮。这里一键搞定torch,torchvision,cudatoolkit 等等。有以下几点需要注意和知晓的:
-
前提需要安装好 NVIDIA 驱动 。
-
不需要另外安装 CUDA(我在没有单独安装 CUDA 情况下,功运行了 torch-gpu )。
-
与电脑或者服务器上已经装好的 CUDA 不会发生冲突 (这一点相比安装 tensorflow 要友好得多)。
-
anaconda 会自动对应匹配 torch,torchvision,cudatoolkit 等的版本。不过在创建虚拟环境的时候要选择合适的 python 版本 。
-
如果不指定 torch 版本,这里一般下载最新的 torch 版本 。
-
anaconda 将 torch、torchvision、cudatoolkit 、python 等等依赖包都集成在创建的虚拟环境里,统一管理依赖包,匹配各自之间的版本。
有一点是需要特别注意的,但是在你们安装时,不一定会碰得上。在不指定版本的情况下,anaconda 会下载最新能匹配的依赖包版本 ,但不一定是你需要的版本;在指定下载版本的情况下,如果用 conda install xxxx=verision1
, anaconda 中如果没有版本为 version1 的 xxxx 依赖包,则会直接报错,如果是使用 pip install XXX==version2
,即使是 anaconda 中没有版本为 version2 的 XXX 依赖包,anaconda 也不会报错,并且使用命令 conda list 会显示安装了 version2 版本的 XXX 依赖包,但是实际上并没有安装好该依赖包 。
conda 安装 pytorch 指令如下
conda install pytorch torchvision