多线程与高并发

例子汇总

一、线程基础知识

1、线程的历史

​ ——一部对CPU性能压榨的历史

  • 单进程人工切换:纸带机
  • 多进程批处理:多个任务批量执行
  • 多进程并行处理:把程序写在不同的内存位置上来回切换
  • 多线程:selector - epoll
  • 线程/协程:绿色线程,用户管理的(而不是OS管理的)线程

2、进程、线程

在这里插入图片描述

进程:双击“QQ.exe”,会把程序放入到内存中,这就是一个进程,再双击一次,又加载到内存中,又是另一个进程。是操作系统进行资源分配和调度的基本单位。(QQ.exe就是程序)

线程:线程共享进程所分配到的“资源”。以线程为单位执行,会找到“QQ.exe”的主线程(main)开始执行

线程切换:执行T1:指令加载到PC,registers存数据,ALU计算。切换线程把信息放到缓存中,再执行T2

在这里插入图片描述

3、思考题

(1)单核CPU设定多线程是否有意义?

有意义:虽然一个核同一时刻只能执行一个线程,但是一个线程不是所有时间都在使用cpu,比如在等待网络输入。

线程类型:

  • CPU密集型:线程大量时间在做计算

  • IO密集型:线程大量时间在做IO操作(比如拷贝文件)

(2)工作线程数是不是设置的越大越好?

不是:线程切换也需要消耗资源,会花大量时间在切换线程上。

(3)工作线程数(线程中线程数量)设多少合适

可以设置不同的线程数,进行压测,找到最合适的值(小例子:写一个循环加1亿个数的程序,分别给一个线程,2个线程,10000个线程看程序使用了多长时间)

可以根据CPU核数来设置:有多少个核就设置几个线程;但是机器上除了我们的程序,还有其他程序在运行,比如tomcat、操作系统自己的程序。我们可以设置80%,预留20%,当然具体得模拟实际情况进行压测

公式(来自《java并发编程实践》):

Nthreads = NCPU * UCPU * (1 + W/C)

其中:

  • NCPU是处理器的核的数目,可以通过Runtime.getRuntime().availableProcessors()得到
  • UCPU是期望CPU的利用率(该值应该介于0和1之间)
  • W/C是等待时间和计算时间的比例(W:wait;C:computer)

(4)你怎么知道线程的等待时间和使用CPU的时间比例呢?

通过工具来进行测算,profiler(统称,是性能统计工具);工具有好多,常用的有JProfiler(收费)。压测环境和真实环境不一样,咋办,用:Arthas(阿里的)

4、创建线程的5种方法

本质上是一种(new Thread().start())。

(1)继承Thread类

(2)实现Runnable接口(比Thread跟灵活,因为一个类只能继承一个类)

(3)实现Callable接口(Future、FutureTask)

(4)线程池

(5)lamada表达式

public class T01_HowToCreateThread {
    
    public static void main(String[] args) throws Exception{
        FutureTask<String> task = new FutureTask<String>(new MyCall());
        //FutureTask实现了Runnable接口
        Thread t = new Thread(task);
        t.start();
        System.out.println(task.get());

        ExecutorService service = Executors.newCachedThreadPool();
        service.execute(()->{
            System.out.println("hello ThreadPool");
        });
        Future<String> f = service.submit(new MyCall());
        String s = f.get();
        System.out.println(s);
        service.shutdown();

    }
}

class MyCall implements Callable<String> {
    @Override
    public String call(){
        System.out.println("Hello MyCall");
        return "success";
    }
}

FutureTask定义:

public class FutureTask<V> implements RunnableFuture<V>
public interface RunnableFuture<V> extends Runnable, Future<V>

5、零散记录

  • 同步和非同步方法可以同时调用。
  • atomic lock都是自旋锁
  • sleep():指定时间不使用cpu
  • yield():让出一个cpu时间片
  • join():如果有两个线程t1、t2;t1执行了t2.join(),则暂停t1执行,等待t2执行完再继续执行t1。(经常用来等待另一个线程的介绍,自己调用自己的join方法没什么用)
  • stop():不建议使用,容易产生状态不一致。
  • wait()——notify()、notifyAll()
  • interrupter()
  • lockSupport.park()——LockSupport.unpark()
  • getState():获得线程状态
  • 同步异步
    • 同步(synchronized):同步的概念就是共享,如果不是共享的资源,也就没有必要同步。
    • 异步(asynchronized):异步的概念就是独立,相互之间不受制约。
      • 同步的目的就是为了线程安全,其实对于线程安全来说,需要满足两个特性:
        • 原子性(同步)
        • 可见性

6、synchronized

  • synchronized即保证了可见性,也保证了原子性。

  • synchronized——Hotspot实现:对象头拿出2位来标志

  • synchronized(this)和synchronized方法是等价的,synchronized static方法相当于synchronized(T.class);T.class也是一个对象(特殊的对象)。

  • 写加锁,读不加锁。有可能出现脏读的问题。

  • synchronized的可重入性:一个同步方法可以调用另外一个同步方法,一个线程已经拥有某个对象的锁,再次申请的时候仍然会得到该对象的锁。(子类重写父类synchronizd方法,子类调用super…如果不是可重入就会产生死锁)

  • 程序中出现异常,锁会被释放。

  • synchronized不能用String常量(不同地方使用相同字符串是同一个对象)、Integer(变一下值会变成新的对象)、Long等基础类型

  • 锁对象改变:锁定某对象o,如果o的属性发生改变,不影响锁的使用;但是如果o变成另外一个对象,则锁定的对象发生改变;应该避免将锁定对象的引用变成另外的对象。(习惯给锁对象加 final修饰)

7、synchronized的底层实现

JDK早期:重量级 - OS

之后改进:

(1)锁升级

(1)偏向锁(markword 记录这个线程ID)

(2)如果有其他线程争用,升级为自旋锁

(3)默认争抢10次以后,重量级锁 - OS

自旋锁占CPU,但是不访问操作系统,在用户态解决所得问题,不经过内核态,所以效率更高。

问题:什么时候用自旋?什么时候用系统锁?

  • 执行时间短(加锁代码),线程数少,用自旋
  • 执行时间长,线程数多,用系统锁

(2)synchronized优化

  • 锁粒度细化
  • 某些情况下也可以进行锁粒度粗化(细锁多,减少锁竞争)

8、volatile

volatile关键字只具有可见性,没有原子性。要实现原子性建议使用atomic类的系列对象,支持原子性操作(注意atomic类只保证本身方法原子性,并不保证多次操作的原子性)。netty的底层代码就大量使用了volatile

  • 保证线程可见性
    • MESI 缓存一致性协议
  • 不保证原子性
  • 禁止指令重排(volatile禁止的是语言级别的,不能禁止CPU)
    • 指令
      • loadfence指令
      • storefence指令
    • DCL单例(double check lock)
    • new对象三步(指令重排可能导致第二第三步顺序颠倒)
      • 分配内存
      • 赋初值
      • 变量指向内存地址

问:到底是强制读主线程的,还是写入时间不定

9、CAS

  • 也叫:无锁优化、自旋、乐观锁

  • Compare And Swap

  • CPU源语支持

  • Atomic开头的类都是CAS的

  • cas(V, Expected, NewValue):中间不能被打断,CPU源语支持

    if V == E

    V = New

    otherwise try again or fail

ABA问题:原来值是1,一个线程get后,在进行cas操作前,这个1变成了2,又变成了1。

解决方法:利用版本号解决。

atomic中的类:AtomicStampedReference

Unsafe

单例;Compare And Set操作都是在Unsafe类中完成。

  • 直接操作内存:allocateMemory
  • 直接生成实例
  • 直接操作类或实例变量

二、线程状态

1、Java中6种线程状态

(1)NEW: 线程刚刚创建,还没有启动

(2)RUNNABLE: 可运行状态,由线程调度器可以安排执行(READY、RUNNING)

(3)WAITING: 等待被唤醒

(4)TIMED WAITING: 隔一段时间后自动唤醒

(5)BLOCKED: 被阻塞

(6)TERMINATED: 线程结束

在这里插入图片描述

图中的Waiting是忙等待,自旋。除了Synchronized的等锁为blocked,其他的等锁都是WAITING

三、线程的“打断”(interrupt)

1、interrupt相关的三个方法

//Thread.java
public void interrupt()				//t.interupt()打断t线程(设置t线程某给标志位f=true,并不是打断线程的运行)
public boolean isInterrupted()		//t.isInterrupted() 查询打断标志位是否被设置(是不是曾经被打断过)
public static boolean interrupted()	//Thread.interrupted() 查看“当前”线程是否被打断,如果被打断,恢复标志位

2、sleep、wait、join的时候,调用interrupted,线程会抛出InterruptedException,catch异常后,标志位会复位。

3、interrupt不会打断正在争抢锁、竞争锁的线程,包括synchronized和lock。如果要打断可以使用lock.lockInterruptibly()。

四、线程的“结束”

如何优雅的结束一个线程?

eg:上传一个大文件,正在处理费时的计算,如何优雅的结束这个线程?

1、自然结束(能自然结束尽量自然结束)

2、stop()、suspend()、resume()

3、volatile标志

  • 不适合某些场景(比如还没有同步的时候,线程做了阻塞操作,没有办法循环回去)
  • 打断时间不是特别精准,比如一个阻塞容器,容量为5的时候结束生产者,但是,由于volatile同步线程标志位的时间控制不是很精准,有可能生产者还继续生产一段时间。

4、interrupt、 isInterrupted(比较优雅)

五、并发编程三大特性

1、可见性(visibility)

(1)volatile

  • volatile可使基本类型线程间可见
  • 某些语句会触发内存缓存同步刷新(比如System.out.println,该方法里面使用了synchronized)
  • volatile修饰引用类型,对象里面的变量不可见

(2)多级缓存

在这里插入图片描述

在这里插入图片描述

registers读数据,是一级一级读先L1、然后L2,线程间可见指的是main memory可见。

(3)缓存行

:一次读一整块的数据(64 byte)

空间局部性原理:当我用到一个值的时候,一般会用到该值接下来内存的值。

时间局部性原理:当我读了一个指令的时候,很可能会用到下个指令。

在这里插入图片描述

(4)缓存一致性

(和volatile无关):两个核中如果读入了同一数据,一个核中修改了数据,缓存一致性协议会通知另一个核,另一个核重新同步数据。

public class T16_Cache_line_padding {

    public static long COUNT = 100_0000_0000L;

    private static class T{
        //private long p1,p2,p3,p4,p5,p6,p7;
        @Contended //只有jdk1.8起作用  使用时加上参数:-XX:-RestrictContended
        public volatile long x = 0L;
        //private long p8,p9,p10,p11,p12,p13,p14,p15;
    }

    public static T[] arr = new T[2];

    static {
        arr[0] = new T();
        arr[1] = new T();
    }

    public static void main(String[] args) throws InterruptedException {
        CountDownLatch latch = new CountDownLatch(2);
        Thread t1 = new Thread(() -> {
            for (long i = 0; i < COUNT; i++) {
                arr[0].x = i;
            }
            latch.countDown();
        });

        Thread t2 = new Thread(() -> {
            for (long i = 0; i < COUNT; i++) {
                arr[1].x = i;
            }
            latch.countDown();
        });

        final long startTime = System.nanoTime();
        t1.start();
        t2.start();
        latch.await();
        System.out.println((System.nanoTime() - startTime) / 100_0000);

    }

}
  • JDK 1.7就是使用了这种填充的写法(LinkedBlockingQueue)
  • disruptor开源框架也用来这种写法(单机最强的MQ)RingBuffer类中

硬件层面的缓存一致性:不同CPU使用的缓存一致性协议是不同的,MESI Cache一致性协议只是其中一种,是intel设计的。

在这里插入图片描述

为什么缓存一行是64字节?

缓存行越大,局部性空间效率高,但读取时间慢

缓存行越小,局部性空间效率越低,但读取时间快

去一个折中值,目前多用:64字节

2、有序性(ordering)

(1)乱序证明

public class T17_Disorder {

    private static int a = 0, b = 0;
    private static int x = 0, y = 0;

    public static void main(String[] args) throws InterruptedException {
        for(long i = 0; i < Long.MAX_VALUE; i++) {
            a = 0;
            b = 0;
            x = 0;
            y = 0;

            CountDownLatch latch = new CountDownLatch(2);

            Thread t1 = new Thread(() -> {
                a = 1;
                x = b;
                latch.countDown();
            });

            Thread t2 = new Thread(()->{
                b = 1;
                y = a;
                latch.countDown();
            });

            t1.start();
            t2.start();
            latch.await();

            if(x == 0 && y ==0) {
                System.out.println("第" + i + "次:x=" + x + ", y=" + y);
                break;
            }

        }
    }

}

(2)为何会有乱序?

答:为了提高效率;比如,一个指令去内存中读数据(但是寄存器的效率是内存的100倍),在这个等待过程中,可以先执行第二个指令(++操作)。

(3)乱序存在的条件

  • as - if - serial
  • 不影响单线程的最终一致性

前后两条语句没有依赖关系。

(4)乱序带来的问题

1)例子
public class T18_NoVisibility {

    private static volatile boolean ready = false;
    private static int number = 0;

    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            while (!ready) {
                Thread.yield();
            }
            System.out.println(number);
        });

        t1.start();

        //这两句没有依赖关系,可能乱序执行,导致number输出0
        number = 42;
        ready = true;

    }

}
2)对象的半初始化转态

this对象溢出:原因——指令重排,成员变量为中间状态,还没赋初始值,就被另一个线程取出来了

public class T19_This_escape {

    private int num = 8;

    public T19_This_escape(){
        new Thread(()->{
            System.out.println(this.num);//有可能输出0
        }).start();
    }

    public static void main(String[] args) throws IOException {
        new T19_This_escape();
        System.in.read();//保证主线程结束前,上面那个线程执行玩
    }

}

所以,最好不要再构造方法里启动线程(可以new线程)

3、原子性(atomicity)

六、JUC同步工具

1、atomic

AtomicLong:CAS锁

LongAdder:分段锁 + CAS;专门用来做多个线程对一个数进行递增。

问题:多个线程对一个数进行递增,那种效率更高?synchronized、AtomicLong、LongAdder

2、ReentrantLock

  • 可以替代synchronized,使用lock()、unlock()。
  • 使用syn锁定的话如果遇到异常,jvm会自动释放锁,但是lock必须手动释放锁,因此经常在finally中进行锁的释放;
  • lock.tryLock(5, TimeUnit.SECONDS)尝试5秒内获得锁,获得不了就结束阻塞
  • lock.lockInterruptibly()使用该方法表示可以被打断
  • new ReentrantLock(true)创建公平锁
  • 公平的实现是使用一个队列来实现的,这个队列在AbstractQueuedSynchronizer类中
  • 多个condition本质就是多个等待队列,可以notifyAll()指定的线程组

3、CountDownLatch门闩

用于某个线程在其他线程之后执行

例子:100个线程执行完后,主线程继续执行

private static void usingCountDownLatch() {
    Thread[] threads = new Thread[100];
    CountDownLatch latch = new CountDownLatch(threads.length);

    for(int i=0; i<threads.length; i++) {
        threads[i] = new Thread(()->{
            int result = 0;
            for(int j=0; j<10000; j++) result += j;
            latch.countDown();
        });
    }

    for (int i = 0; i < threads.length; i++) {
        threads[i].start();
    }

    try {
        latch.await();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }

    System.out.println("end latch");
}

4、CyclicBarrier线程栅栏

20个线程阻塞,然后一起执行。

public static void main(String[] args) {

    //CyclicBarrier barrier = new CyclicBarrier(20);

    /*CyclicBarrier barrier = new CyclicBarrier(20, new Runnable() {
            @Override
            public void run() {
                System.out.println("满人,发车");
            }
        });*/

    CyclicBarrier barrier = new CyclicBarrier(20, () -> {
        System.out.println("满人,发车");
    });

    for(int i = 0; i < 100; i++) {
        new Thread(()->{
            try {
                System.out.println("等待");
                barrier.await();
                System.out.println("执行");
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (BrokenBarrierException e) {
                e.printStackTrace();
            }
        }).start();
    }


}

限流工具:Guava RateLimiter

5、Phaser

有可能用到的场景:遗传算法

6、ReadWriteLock

  • 共享锁
  • 排他锁(互斥锁)
ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
Lock readLock = readWriteLock.readLock();
Lock writeLock = readWriteLock.writeLock();

7、Semaphore信号量

同时执行线程的数量,限流

Semaphore s = new Semaphore(2, true);//可以设置为公平
s.acquire();//获得许可,信号减一;没获取到,则阻塞在这,等待其他线程release
s.release();//释放许可

8、Exchanger

两个线程间交换对象,交换方法是阻塞的

ReadWriteLock——stampedLock

9、LockSupport

unpark可以先park执行

LockSupport.park();//当前线程阻塞
LockSupport.unpark(t);//t线程开始运行,停止阻塞

七、源码:

读源码原则

  • 跑步起来不读

  • 解决问题就好——目的性

  • 一条线索到底

  • 无关细节略过

1、AQS:

  • Template method

  • Callback Function

  • 父类默认实现

  • 子类具体实现

(1)ReentrantLock源码:

jdk 11如下

类继承关系图:NonfairSync ——> Sync ——> AQS(class名:AbstractQueuedSynchronizer)

在这里插入图片描述

方法调用图:Template method:AQS.acquiree(1)调用了tryAcquire(1),AQS自己有改方法,但是实际运行中调用的是子类的tryAcquire(1),子类重写该方法

在这里插入图片描述

(2)AQS源码(CLH)

核心:state(volatile int);该值的意义取决于子类;在ReentrantLock表示0表示未加锁,1表示加了锁,2表示重入了两次。在CountDownLatch中表示。。。

AQS里面维护了一个队列(元素就是node),有一个内部类Node,node有一个属性是Thread,有前一个节点引用,和后一个节点引用,双向链表(需要看前一个节点的状态)。

在这里插入图片描述

VarHandle 1.9之后才有,通过varhandle可以做cas的原子操作。没有varhandle之前,只能用反射,varhandle效率更高。

  • 普通属性原子操作
  • 比反射快,直接操作二进制码

2、ThreadLocal源码

Thread对象中维护了一个Map,key就是ThreadLocal。

Spring中的声明式事务用了ThreadLocal

ThreadLocal的set()方法:

public void set(T value) {
    Thread t = Thread.currentThread();
    //获得的是Thread中的map;map(ThreadLocal, value)
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        map.set(this, value);
    } else {
        createMap(t, value);
    }
}

3、强软弱虚引用

  • 强:new出来的对象
  • 软:堆内存不够,会回收软引用指向的对象
    • 大对象的缓存
    • 常用对象的缓存
  • 弱:遭到gc就会回收
    • 缓存,没有容器引用指向的时候就需要清除的缓存
    • ThreadLocal(不使用一定要remove(),不然会内存泄露;弱引用只能解决key,不能解决value)
    • WeakHashMap
  • 虚(给写JVM的人用的,或自己写netty)
    • 管理堆外内存
    • JVM回收不到对外堆存,可以用虚引用检测DirectByteBuffer,它被回收的时候,我们通过Queue检测,然后回收堆外内存(java回收堆外内存,Unsafe)

弱引用:

在这里插入图片描述

虚引用:

在这里插入图片描述

八、同步容器

1、容器Tree

  • Collection
    • List
      • CopyOnWriteList
      • Vector Stack
      • ArrayList
      • LinkedList
    • Set
      • HashSet LinkedHashMap
      • SortedSet TreeSet
      • EnumSet
      • CopyOnWriteArraySet
      • ConcurrentSkipListSet
    • Queue
      • Deque
        • ArrayDeque
        • BlokingDeque LinkedBlockingDeque
      • BlockingQueue
        • ArrayBlockingQueue
        • PriorityBlockingQueue
        • LinkedBlockingQueue
        • TransferQueue LinkedTransferQueue
        • SynchronousQueue
      • PriorityQueue
      • ConcurrentLinkedQueue
      • DelayQueue
  • Map
    • HashMap LinkedHashMap
    • TreeMap
    • WeakHashMap
    • IdentityHashMap
    • ConcurrentHashMap
    • ConcurrentSkipListMap

2、历史

Queue与List主要区别,它是为高并发设计的

Queue的子接口——Deque(双端队列,两端都可以取和放)

1.0的时候只有两个集合:Vector,HashTable;自带锁,基本不用。

//可以把hashMap变成线程安全的;里面new Object(),然后synchronized这个对象
Collections.synchronizedMap(new HashMap<UUID, UUID>());

ConcurrentHashMap主要是读的效率更高,写的效率比HashTable低。

同步容器类

1:Vector Hashtable :早期使用synchronized实现

2:ArrayList HashSet :未考虑多线程安全(未实现同步)

3:HashSet vs Hashtable StringBuilder vs StringBuffer

4:Collections.synchronized***工厂方法使用的也是synchronized

使用早期的同步容器以及Collections.synchronized***方法的不足之处,请阅读:
http://blog.csdn.net/itm_hadf/article/details/7506529

使用新的并发容器
http://xuganggogo.iteye.com/blog/321630

3、Map

非同步容器:

  • LinkedHashMap遍历效率比HashMap高
  • TreeMap:红黑树,排好序的
  • HashMap:无序

高并发集合:

  • ConcurrentHashMap:无序
  • ConcurrentSkipListMap:有序;跳表结构;CAS实现在Tree的节点上太复杂了,所有没有CurrentTreeMap,但是有时候又需要排好序的Map,所有有了这个集合。

跳表和ConcurrentSkipListMap源码

4、List

CopyOnWriteSet

CopyOnWriteList:写时复制;读不加锁,写的时候,synchronized加锁,并把原来的数组复制一份,操作复制的新数组,然后再替换掉原来的数组。使用情况:读特别多,写比较少。

add源码:

public boolean add(E e) {
    synchronized (lock) {
        Object[] es = getArray();
        int len = es.length;
        es = Arrays.copyOf(es, len + 1);
        es[len] = e;
        setArray(es);
        return true;
    }
}

synchronizedList:

List<String> strs = new ArrayList<>();
List<String> strsSync = Collections.synchronizedList(strs);

5、Queue

Queue方法:

strs.offer(obj);//添加元素
strs.poll();//取出并remove
strs.peek();//取出不remove

非BlockingQueue:ConcurrentLinkedQueue

(1)BlockingQueue

BlockingQueue添加的方法:

//阻塞的存取方法
strs.take();//当队列为null,阻塞
strs.put(obj); //满了就会等待,程序阻塞

//各种添加对比
strs.add(obj);//满了add会抛异常
strs.offer(obj);//满了,会返回false表示添加失败
strs.offer(obj, 1, TimeUnit.SECONDS);//阻塞一秒后失败

  • LinkedBlockingQueue:无界队列(最大Integer.MAXVALUE)
  • ArrayBlockingQueue:有界队列
  • DelayQueue:按时间(可自己实现compareTo())进行任务调度,里面的任务必须实现Delayed接口;本质是PriorityQueque
  • PriorityQueque:实现是一个二叉树(小顶堆)
  • SynchronousQueue:线程间传单个任务;容量为0;一个线程put(),另一个线程take()。两个均为阻塞方法,也就是说如果没有线程take(),那么put()会一致阻塞,反之亦然。自己实现线程池常用。
  • TransferQueue:线程间传过个任务;加入队列后,阻塞,等到被取出后才继续往下执行;自己实现线程池常用

PipedStream:效率低

九、线程池

1、基础知识

在这里插入图片描述

Executor:线程定义

ExecutorService:线程的执行

常用类:

  • Callable:又返回结果的线程接口
  • Future:存储执行的将来产生的结果
  • FutureTask:实现了Runnable、Future接口,成员变量还有Callable

CompletableFuture:可管理多个Future返回的结果,底层使用的ForkJoinPool。

JDK提供两种类型的线程池

  • ThreadPoolExecutor
  • ForkJoinPool
    • 分解汇总的任务
    • 用很少的线程可以执行很多的任务(子任务)TPE做不到先执行任务
    • CPU密集型

线程池里面维和了两个集合,一个是线程集合,一个是任务集合

在这里插入图片描述

2、自定义线程池参数

new ThreadPoolExecutor的七个参数

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    ...
}

参数解释

keepAliveTime:线程多长时间没活干,超过这个时间归还线程资源给OS

threadFactory:ThreadFactory接口只有一个newThread()方法。传参可以为Executors.defaultThreadFactory(),默认的Factory。该类的newThread方法

线程池开始没线程,任务来了创建线程,到达核心线程数后(核心线程不会回收),放入队列中,队列满了,再创建线程,直到最大线程数,最后执行拒绝策略

注意点

  • 创建线程或线程池时要指定有意义的线程名,方便错误回溯;优先级不要设置,默认的就好,设置也没什么用;守护线程设置成false(t.sestDaemon(fasle)——t是线程对象)
  • 最好不要用JDK自带的几个线程池,因为它的Queue可能满,造成OOM

(1)拒绝策略

JDK提供了4种拒绝策略

  • Abort:抛异常
  • Discard:扔掉,不抛异常
  • DiscardOldest:扔掉排队时间最久的
  • CallerRuns:调用者处理任务(哪个线程execute()了,就哪个线程执行任务)

自定义拒绝策略:实现RejectedExecutionHandler接口

3、Executors

可以理解为线程池的工厂

(1)SingleThreadPool

可以保证线程执行的顺序

问题:为什么要有单线程的线程池?

  • 有任务队列(不用自己维护)
  • 生命周期管理
//JDK源码
public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>()));
}

(2)CachedPool

//JDK源码
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}

(3)FixedThreadPool

//JDK源码
public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}

问题:什么时候用CachedPool vs FixedThreadPool?(阿里建议自定义)

CachedPool:来的线程忽高忽低

FixedThreadPool:来的线程比较稳

(4)ScheduledPool

//JDK源码
public ScheduledThreadPoolExecutor(int corePoolSize) {
    super(corePoolSize, Integer.MAX_VALUE,
          DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
          new DelayedWorkQueue());
}

很少用,一般用quartz之类的框架

问题:假如提供一个闹钟服务,订阅这个服务的人特别多,10亿人,怎么优化?

常识:并发(concurrent)和并行(parallel)的却别

  • 并发指任务提交,并行指任务执行
  • 并行是并发的子集
  • 并发一个CPU交替执行线程,并行多个CPU同时执行多个线程

4、ThreadPoolExecutor源码

(1)常用变量的解释

// 1. `ctl`,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 2. `COUNT_BITS`,`Integer.SIZE`为32,所以`COUNT_BITS`为29
private static final int COUNT_BITS = Integer.SIZE - 3;
// 3. `CAPACITY`,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

// runState is stored in the high-order bits
// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;

// Packing and unpacking ctl
// 5. `runStateOf()`,获取线程池状态,通过按位与操作,低29位将全部变成0
private static int runStateOf(int c)     { return c & ~CAPACITY; }
// 6. `workerCountOf()`,获取线程池worker数量,通过按位与操作,高3位将全部变成0
private static int workerCountOf(int c)  { return c & CAPACITY; }
// 7. `ctlOf()`,根据线程池状态和线程池worker数量,生成ctl值
private static int ctlOf(int rs, int wc) { return rs | wc; }

/*
 * Bit field accessors that don't require unpacking ctl.
 * These depend on the bit layout and on workerCount being never negative.
 */
// 8. `runStateLessThan()`,线程池状态小于xx
private static boolean runStateLessThan(int c, int s) {
    return c < s;
}
// 9. `runStateAtLeast()`,线程池状态大于等于xx
private static boolean runStateAtLeast(int c, int s) {
    return c >= s;
}

(2)构造方法

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    // 基本类型参数校验
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    // 空指针校验
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    // 根据传入参数`unit`和`keepAliveTime`,将存活时间转换为纳秒存到变量`keepAliveTime `中
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}

(3)提交执行task的过程

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    /*
     * Proceed in 3 steps:
     *
     * 1. If fewer than corePoolSize threads are running, try to
     * start a new thread with the given command as its first
     * task.  The call to addWorker atomically checks runState and
     * workerCount, and so prevents false alarms that would add
     * threads when it shouldn't, by returning false.
     *
     * 2. If a task can be successfully queued, then we still need
     * to double-check whether we should have added a thread
     * (because existing ones died since last checking) or that
     * the pool shut down since entry into this method. So we
     * recheck state and if necessary roll back the enqueuing if
     * stopped, or start a new thread if there are none.
     *
     * 3. If we cannot queue task, then we try to add a new
     * thread.  If it fails, we know we are shut down or saturated
     * and so reject the task.
     */
    int c = ctl.get();
    // worker数量比核心线程数小,直接创建worker执行任务
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    // worker数量超过核心线程数,任务直接进入队列
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        // 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。
        // 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。
        if (! isRunning(recheck) && remove(command))
            reject(command);
        // 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    // 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。
    // 这儿有3点需要注意:
    // 1. 线程池不是运行状态时,addWorker内部会判断线程池状态
    // 2. addWorker第2个参数表示是否创建核心线程
    // 3. addWorker返回false,则说明任务执行失败,需要执行reject操作
    else if (!addWorker(command, false))
        reject(command);
}

(4)addworker源码解析

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    // 外层自旋
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价
        // (rs > SHUTDOWN) || 
        // (rs == SHUTDOWN && firstTask != null) || 
        // (rs == SHUTDOWN && workQueue.isEmpty())
        // 1. 线程池状态大于SHUTDOWN时,直接返回false
        // 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false
        // 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false
        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        // 内层自旋
        for (;;) {
            int wc = workerCountOf(c);
            // worker数量超过容量,直接返回false
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            // 使用CAS的方式增加worker数量。
            // 若增加成功,则直接跳出外层循环进入到第二部分
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            // 线程池状态发生变化,对外层循环进行自旋
            if (runStateOf(c) != rs)
                continue retry;
            // 其他情况,直接内层循环进行自旋即可
            // else CAS failed due to workerCount change; retry inner loop
        } 
    }
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            // worker的添加必须是串行的,因此需要加锁
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                // 这儿需要重新检查线程池状态
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    // worker已经调用过了start()方法,则不再创建worker
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    // worker创建并添加到workers成功
                    workers.add(w);
                    // 更新`largestPoolSize`变量
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            // 启动worker线程
            if (workerAdded) {
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        // worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

(5)线程池worker任务单元

本身就是一个线程,可以用来执行;也是一个锁,可以自己worker.lock()

private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    /**
     * This class will never be serialized, but we provide a
     * serialVersionUID to suppress a javac warning.
     */
    private static final long serialVersionUID = 6138294804551838833L;

    /** Thread this worker is running in.  Null if factory fails. */
    final Thread thread;
    /** Initial task to run.  Possibly null. */
    Runnable firstTask;
    /** Per-thread task counter */
    volatile long completedTasks;

    /**
     * Creates with given first task and thread from ThreadFactory.
     * @param firstTask the first task (null if none)
     */
    Worker(Runnable firstTask) {
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        // 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前worker
        this.thread = getThreadFactory().newThread(this);
    }

    /** Delegates main run loop to outer runWorker  */
    public void run() {
        runWorker(this);
    }

    // 省略代码...
}

(6)核心线程执行逻辑-runworker

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    // 调用unlock()是为了让外部可以中断
    w.unlock(); // allow interrupts
    // 这个变量用于判断是否进入过自旋(while循环)
    boolean completedAbruptly = true;
    try {
        // 这儿是自旋
        // 1. 如果firstTask不为null,则执行firstTask;
        // 2. 如果firstTask为null,则调用getTask()从队列获取任务。
        // 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待
        while (task != null || (task = getTask()) != null) {
            // 这儿对worker进行加锁,是为了达到下面的目的
            // 1. 降低锁范围,提升性能
            // 2. 保证每个worker执行的任务是串行的
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            // 如果线程池正在停止,则对当前线程进行中断操作
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            // 执行任务,且在执行前后通过`beforeExecute()`和`afterExecute()`来扩展其功能。
            // 这两个方法在当前类里面为空实现。
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                // 帮助gc
                task = null;
                // 已完成任务数加一 
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        // 自旋操作被退出,说明线程池正在结束
        processWorkerExit(w, completedAbruptly);
    }
}

5、WorkStealingPool

每个线程都有自己的队列,当线程自己的队列空了后,会拿别人别的线程队列里的任务。底层调用的ForkJoinPool,相当于封装了一下ForkJoinPool,用起来更方便;不是TreadPoolExecutor。

原理

  • 多个work queue
  • 采用work stealing算法

在这里插入图片描述

6、ForkJoinPool

  • 一个任务太大,可以切成一个一个小任务,然后再把每个任务的结果汇总
  • 比如:10亿个数,相加
  • fork:分解任务;join:汇总任务结果
  • 线程池里的任务必须是可以拆分的任务,可以继承RecursiveAction类,无返回值;继承RecursiveTask类,无返回值

7、ParallelStreamAPI

并行流:里面用的也是forkJoinPool

例子:对比流式处理和并行流的执行时间

十、JMH

Java MicrobenChmark Harness

官网

进一步学习,官方样例

  • 2013年首发
  • 由JIT的开发人员开发
  • 归于OpenJDK

1、创建JMH测试

  1. 创建Maven项目,添加依赖

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <properties>
            <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
            <encoding>UTF-8</encoding>
            <java.version>1.8</java.version>
            <maven.compiler.source>1.8</maven.compiler.source>
            <maven.compiler.target>1.8</maven.compiler.target>
        </properties>
    
        <groupId>mashibing.com</groupId>
        <artifactId>HelloJMH2</artifactId>
        <version>1.0-SNAPSHOT</version>
    
    
        <dependencies>
            <!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core -->
            <dependency>
                <groupId>org.openjdk.jmh</groupId>
                <artifactId>jmh-core</artifactId>
                <version>1.21</version>
            </dependency>
    
            <!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-generator-annprocess -->
            <dependency>
                <groupId>org.openjdk.jmh</groupId>
                <artifactId>jmh-generator-annprocess</artifactId>
                <version>1.21</version>
                <scope>test</scope>
            </dependency>
        </dependencies>
    
    
    </project>
    
  2. idea安装JMH插件 JMH plugin v1.0.3

  3. 由于用到了注解,打开运行程序注解配置

    compiler -> Annotation Processors -> Enable Annotation Processing

  4. 定义需要测试类PS (ParallelStream)

    package com.mashibing.jmh;
    
    import java.util.ArrayList;
    import java.util.List;
    import java.util.Random;
    
    public class PS {
    
    	static List<Integer> nums = new ArrayList<>();
    	static {
    		Random r = new Random();
    		for (int i = 0; i < 10000; i++) nums.add(1000000 + r.nextInt(1000000));
    	}
    
    	static void foreach() {
    		nums.forEach(v->isPrime(v));
    	}
    
    	static void parallel() {
    		nums.parallelStream().forEach(PS::isPrime);
    	}
    	
    	static boolean isPrime(int num) {
    		for(int i=2; i<=num/2; i++) {
    			if(num % i == 0) return false;
    		}
    		return true;
    	}
    }
    
  5. 写单元测试

    这个测试类一定要在test package下面

    package com.mashibing.jmh;
    
    import org.openjdk.jmh.annotations.Benchmark;
    
    import static org.junit.jupiter.api.Assertions.*;
    
    public class PSTest {
    @Benchmark	//JDK的注解,不过自由定义
    /*@Warmup(iterations = 1, time = 3)//每次调用前,预热,两次预热间隔3秒
    @Fork(5) //启5个线程执行
    @BenchmarkMode(Mode.Throughput) //Mode.Throughput:吞吐量	次/秒  ops/time
    @Measurement(iterations = 1, time = 3) //方法调用1次*/
    public void testForEach() {
      PS.foreach();
    }
    }
    
  6. 运行测试类,如果遇到下面的错误:

    ERROR: org.openjdk.jmh.runner.RunnerException: ERROR: Exception while trying to acquire the JMH lock (C:\WINDOWS\/jmh.lock): C:\WINDOWS\jmh.lock (拒绝访问。), exiting. Use -Djmh.ignoreLock=true to forcefully continue.
    	at org.openjdk.jmh.runner.Runner.run(Runner.java:216)
    	at org.openjdk.jmh.Main.main(Main.java:71)
    

    这个错误是因为JMH运行需要访问系统的TMP目录,解决办法是:

    打开RunConfiguration -> Environment Variables -> include system environment viables

  7. 阅读测试报告

2、JMH中的基本概念

  1. Warmup
    预热,由于JVM中对于特定代码会存在优化(本地化, JIT),预热对于测试结果很重要
  2. Mesurement
    总共执行多少次测试
  3. Timeout
  4. Threads
    线程数,由fork指定
  5. Benchmark mode
    基准测试的模式
  6. Benchmark
    测试哪一段代码

十一、Disruptor

单机性能最好的消息队列

代码

1、介绍

主页:http://lmax-exchange.github.io/disruptor/

源码:https://github.com/LMAX-Exchange/disruptor

GettingStarted: https://github.com/LMAX-Exchange/disruptor/wiki/Getting-Started

api: http://lmax-exchange.github.io/disruptor/docs/index.html

maven: https://mvnrepository.com/artifact/com.lmax/disruptor

2、Disruptor的特点

对比ConcurrentLinkedQueue : 链表实现

JDK中没有ConcurrentArrayQueue

Disruptor是数组实现的

无锁,高并发,使用环形Buffer,直接覆盖(不用清除)旧的数据,降低GC频率

实现了基于事件的生产者消费者模式(观察者模式)

3、RingBuffer

在这里插入图片描述

环形队列

RingBuffer的序号,指向下一个可用的元素

采用数组实现,没有首尾指针

对比ConcurrentLinkedQueue,用数组实现的速度更快

假如长度为8,当添加到第12个元素的时候在哪个序号上呢?用12%8决定

当Buffer被填满的时候到底是覆盖还是等待,由Producer决定

长度设为2的n次幂,利于二进制计算,例如:12%8 = 12 & (8 - 1) pos = num & (size -1)

4、Disruptor开发步骤

  1. 定义Event - 队列中需要处理的元素

  2. 定义Event工厂,用于填充队列

    这里牵扯到效率问题:disruptor初始化的时候,会调用Event工厂,对ringBuffer进行内存的提前分配

    GC产频率会降低

  3. 定义EventHandler(消费者),处理容器中的元素

5、事件发布模板

long sequence = ringBuffer.next();  // Grab the next sequence
try {
    LongEvent event = ringBuffer.get(sequence); // Get the entry in the Disruptor
    // for the sequence
    event.set(8888L);  // Fill with data
} finally {
    ringBuffer.publish(sequence);
}

6、使用EventTranslator发布事件

//===============================================================
        EventTranslator<LongEvent> translator1 = new EventTranslator<LongEvent>() {
            @Override
            public void translateTo(LongEvent event, long sequence) {
                event.set(8888L);
            }
        };

        ringBuffer.publishEvent(translator1);

        //===============================================================
        EventTranslatorOneArg<LongEvent, Long> translator2 = new EventTranslatorOneArg<LongEvent, Long>() {
            @Override
            public void translateTo(LongEvent event, long sequence, Long l) {
                event.set(l);
            }
        };

        ringBuffer.publishEvent(translator2, 7777L);

        //===============================================================
        EventTranslatorTwoArg<LongEvent, Long, Long> translator3 = new EventTranslatorTwoArg<LongEvent, Long, Long>() {
            @Override
            public void translateTo(LongEvent event, long sequence, Long l1, Long l2) {
                event.set(l1 + l2);
            }
        };

        ringBuffer.publishEvent(translator3, 10000L, 10000L);

        //===============================================================
        EventTranslatorThreeArg<LongEvent, Long, Long, Long> translator4 = new EventTranslatorThreeArg<LongEvent, Long, Long, Long>() {
            @Override
            public void translateTo(LongEvent event, long sequence, Long l1, Long l2, Long l3) {
                event.set(l1 + l2 + l3);
            }
        };

        ringBuffer.publishEvent(translator4, 10000L, 10000L, 1000L);

        //===============================================================
        EventTranslatorVararg<LongEvent> translator5 = new EventTranslatorVararg<LongEvent>() {

            @Override
            public void translateTo(LongEvent event, long sequence, Object... objects) {
                long result = 0;
                for(Object o : objects) {
                    long l = (Long)o;
                    result += l;
                }
                event.set(result);
            }
        };

        ringBuffer.publishEvent(translator5, 10000L, 10000L, 10000L, 10000L);

7、使用Lamda表达式

package com.mashibing.disruptor;

import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.util.DaemonThreadFactory;

public class Main03
{
    public static void main(String[] args) throws Exception
    {
        // Specify the size of the ring buffer, must be power of 2.
        int bufferSize = 1024;

        // Construct the Disruptor
        Disruptor<LongEvent> disruptor = new Disruptor<>(LongEvent::new, bufferSize, DaemonThreadFactory.INSTANCE);

        // Connect the handler
        disruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event));

        // Start the Disruptor, starts all threads running
        disruptor.start();

        // Get the ring buffer from the Disruptor to be used for publishing.
        RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();


        ringBuffer.publishEvent((event, sequence) -> event.set(10000L));

        System.in.read();
    }
}

8、ProducerType生产者线程模式

ProducerType有两种模式 Producer.MULTI和Producer.SINGLE

默认是MULTI,表示在多线程模式下产生sequence

如果确认是单线程生产者,那么可以指定SINGLE,效率会提升

如果是多个生产者(多线程),但模式指定为SINGLE,会出什么问题呢?

9、等待策略

(1)(常用)BlockingWaitStrategy:通过线程阻塞的方式,等待生产者唤醒,被唤醒后,再循环检查依赖的sequence是否已经消费。

(2)BusySpinWaitStrategy:线程一直自旋等待,可能比较耗cpu

(3)LiteBlockingWaitStrategy:线程阻塞等待生产者唤醒,与BlockingWaitStrategy相比,区别在signalNeeded.getAndSet,如果两个线程同时访问一个访问waitfor,一个访问signalAll时,可以减少lock加锁次数.

(4)LiteTimeoutBlockingWaitStrategy:与LiteBlockingWaitStrategy相比,设置了阻塞时间,超过时间后抛异常。

(5)PhasedBackoffWaitStrategy:根据时间参数和传入的等待策略来决定使用哪种等待策略

(6)TimeoutBlockingWaitStrategy:相对于BlockingWaitStrategy来说,设置了等待时间,超过后抛异常

(7)(常用)YieldingWaitStrategy:尝试100次,然后Thread.yield()让出cpu

(8)(常用)SleepingWaitStrategy : sleep

10、消费者异常处理

默认:disruptor.setDefaultExceptionHandler()

覆盖:disruptor.handleExceptionFor().with()

11、依赖处理

十二、ThreadPoolExecutor源码

十三、面试题

1、如何保证几个线程顺序执行

法一:主线程中顺序执行start、join方法

Thread thread1 = new Thread(new A());
thread1.start();
thread1.join();
Thread thread2 = new Thread(new B());
thread2.start();
thread2.join();
Thread thread3 = new Thread(new C());
thread3.start();

法二:创建一个只有一根线程的线程池,保证所有任务按照指定顺序执行

ExecutorService executorService = Executors.newSingleThreadExecutor();
executorService.submit(new A());
executorService.submit(new B());
executorService.submit(new C());
executorService.shutdown();

2、实现一个容器,提供两个方法,add,size;写两个线程,线程1添加10个元素到容器中,线程2实现监控元素的个数,当个数到5个时,线程2给出提示并结束。

3、写一个固定容量同步容器,拥有put和get方法,以及getCount方法,能够支持2个生产者线程以及10个消费者线程的阻塞调用

4、两个线程交替打印A-Z、1-26

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值