【排序算法 二】冒泡选择插入希尔归并排序算法(C++)

各种排序算法的思想不在详细介绍,直接看代码(不唯一)
文章底部有各种排序算法的时间复杂度

冒泡排序算法

void bubble_sort(int arr[],int len)//len为数组a的元素个数
{
	int i,j,temp;
	//一定进行len-1轮比较
	for (i=0;i<len-1;i++)
	//每一轮比较前len-1-i个,即已排序好的最后i个不用进行比较
		for (j=0;j<len-1-i;j++)
			if ( arr[j] > arr[j+1] )
			{
				temp = arr[j];
				arr[j] = arr[j+1];
				arr[j+1] = temp;
			}
}

选择排序算法

void selection_sort(int arr[], int len)
{
	int i,j,temp;
	for (i=0;i<len;i++)
		for (j=i+1;j<len;j++)
			if ( arr[j] < arr[i] )
			{
				temp = arr[i];
				arr[i] = arr[j];
				arr[j] = temp;
			}
}

插入排序

void insertion_sort(int arr[], int len)
{

	int i,j ,temp;
	for( i=1; i<len; i++)
	{
		temp = arr[i];
		for (j=i;j>0 ;j--)   //多理解一下
			if( arr[j-1] > temp)
				arr[j] = arr[j-1];
			else
				break;  //一定要想明白为什么可以用break
		arr[j] = temp;
	}	
}

希尔排序

void shell_sort(int arr[], int len) 
{
    int gap, i, j;
    int temp;
    for (gap = len >> 1; gap > 0; gap = gap >> 1)
        for (i = gap; i < len; i++) 
        {
            temp = arr[i];
            for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)
                arr[j + gap] = arr[j];
            arr[j + gap] = temp;
        }
}

归并排序

void merge_sort_recursive(int arr[], int reg[], int start, int end) {
    if (start >= end)
        return;
    int len = end - start, mid = (len >> 1) + start;
    int start1 = start, end1 = mid;
    int start2 = mid + 1, end2 = end;
    merge_sort_recursive(arr, reg, start1, end1);
    merge_sort_recursive(arr, reg, start2, end2);
    int k = start;
    while (start1 <= end1 && start2 <= end2)
        reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
    while (start1 <= end1)
        reg[k++] = arr[start1++];
    while (start2 <= end2)
        reg[k++] = arr[start2++];
    for (k = start; k <= end; k++)
        arr[k] = reg[k];
}

void merge_sort(int arr[],  int len)
 {
    int *reg = (int *)malloc(sizeof(int)*len);
    merge_sort_recursive(arr, reg, 0, len - 1);
}

时间复杂度分析

排序方法平均时间最好时间最坏时间
冒泡排序(稳定)O(n2O(n)O(n2)
选择排序(不稳定)O(n2O(n2O(n2
插入排序(稳定)O(n2O(n)O(n2
希尔排序(不稳定)O(n1.25
堆排序(不稳定)O(n logn)O(n logn)O(n logn)
快速排序(不稳定)O(n logn)O(n logn)O(n2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值