深度学习 TensorFlow 验证码识别

这篇博客介绍了使用TensorFlow进行验证码识别的实践过程,包括建立全连接层输出,二维计算损失,以及进行3维梯度下降训练,最终能识别5000个图片验证码。
摘要由CSDN通过智能技术生成

写代码爽 一直写代码一直爽…
终于觉得写代码不是多么阔怕又头疼的事情了…
因为臣妾记不住呀
#课程来自x马
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如何建立全连接层输出
在这里插入图片描述
转换成二维计算损失

在这里插入图片描述
再转换成3维梯度下降

在这里插入图片描述在这里插入图片描述
在这里插入图片描述


app.flags.DEFINE_string("tfrecords_dir","./tfrecords/captcha.tfrecords",
app.flags.DEFINE_string("captcha_dir","../data/Genpics/","验证码路径")
app.flags.DEFINE_string("letter","ABCDEFGHIJKLMNOPQRSTUVWXYZ","验证码字符的种类")

def dealwithlabel(label_str):
    #构建字符索引{0:“A",1:"B”....}
	num_letter=dict(enumerate(list(FLAGS.letter)))#enumerate就是给序列
	#键值对反转{0:“A",1:"B”....}
	letter_num=dict(zip(num_letter.values(),num_letter.keys()))
	#zip是给它合成元祖一样的东西
	print(letter_num)
	
	#构建标签的列表
	array=[]
	
	#给标签数据进行处理
	for string in label_str:
	    letter_list=[]  #[13,25,15,15]
		#修改编码,b"FVQJ"到字符串,并且循环找到每张验证码的字符对应的数字标记
		for letter in string.decode("utf-8")
		    letter_list.append(letter_num[letter])
			
		array.append(letter_list)
		
	#[[13,25,15,15],[22,10,7,10],[22,15,18,9],[16,6,13,10]]
	
	print(array)
	
	#将array转换成tensor类型,先不转成 one-hot 浪费空间
	label=tf.constant(array) 
	
	return label
	
	
	
def get_captcha_image():
    #获取验证码图片数据
	
	filename=[]
	for i in range(6000):
	    string=str(i)+".jpg"
		filename.append(string)
		
	#构造路径+文件
	file_list=[os.path.join(FLAGS.captcha_dir,file) for file in filename
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值