自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(143)
  • 资源 (4)
  • 收藏
  • 关注

转载 ImportError: DLL load failed: 页面文件太小,无法完成操作。

(numworkers可以在default.yaml文件中修改)多进程导致的内存不够用。

2024-10-25 17:05:26 227

转载 树莓派 /bin/sh: 1: /usr/bin/apt-listchanges: not found 返回了一个错误号 (1) --apt || test $? -lt 10

/bin/sh: 1: /usr/bin/apt-listchanges: not foundE: 子进程 /usr/bin/apt-listchanges --apt || test $? -lt 10 返回了一个错误号 (1)E: Failure running script /usr/bin/apt-listchanges --apt || test $? -lt 10

2023-02-18 15:38:26 1780 1

转载 树莓派 raspberry pi bash: python3:未找到命令 bash: /usr/bin/lsb_release:/usr/bin/python3:解释器错误: 没有那个文件或目录

树莓派 raspberry pi bash: python3:未找到命令 bash: /usr/bin/lsb_release:/usr/bin/python3:解释器错误: 没有那个文件或目录

2023-02-18 15:15:04 1264

转载 Anaconda 打开时卡在Initializing(打不开)

Anaconda打不开解决方案

2023-02-15 19:49:08 4525 3

转载 【环境配置】Collecting package metadata (current_repodata.json): failed的问题解决

在使用conda创建新环境时,出现Collecting package metadata (current_repodata.json): failed的问题,尝试了很多方法都没有解决,最后无意中通过大佬的博客解决了。大佬博客链接:https://www.jianshu.com/p/b1e4f33f975a。首先找到C:/User/Mars>下的.condarc文件,使用记事本打开。然后将一下内容全部复制到.condarc文件中,就可以解决。若没有发现:随便添加一个镜像源。

2023-02-12 21:37:59 1883 2

转载 树莓派raspberry pi更换国内镜像

树莓派更换国内镜像源(清华源)

2023-02-11 22:22:23 1450

转载 查看 CUDA 版本

查看cuda版本

2023-01-26 14:46:44 13806

转载 image2LCD(图像取模软件)无效的输入图像(bitmap image is not valid)

用这个软件在导入图片进去时,会提示无效的输入图片,无论你用什么格式JPG、都不行,换了其他图像取模软件一样不行,应该是图像的问题。(我自己是用wps图片编辑器导出的,成功解决)

2023-01-07 21:33:16 3971 3

原创 anaconda -- ModuleNotFoundError: No module named

anaconda ModuleNotFoundError

2023-01-04 22:10:14 1099

原创 cmd命令(进入文件夹路径、退出环境)

cmd命令

2023-01-04 22:08:44 1181

原创 Ubuntu进入文件路径、卸载指令、

ubuntu一些指令

2023-01-04 20:10:19 391

转载 Solving environment: failed/killed/已杀死 解决方法

在cmd中输入conda create --name torchreid python=3.8后出现Solving environment: killed。

2022-12-28 17:03:31 5780

转载 Windows下复制内容到虚拟机下的linux系统(Ubuntu)

1、在windows下ctrl+c复制内容后,就可以把内容粘贴到Linux指定下的地方了。切换,此时光标会变成五指形状,此时再按。2、转到VM下要粘贴的地方。

2022-12-27 19:37:10 13786 8

转载 奇葩错误 安装wxPython(cmd和pycharm内部都安装失败)

安装出错,解决方法 安装wxPython(cmd和pycharm内部都安装失败)

2022-06-09 23:55:36 892

原创 奇葩错误 -- 轮廓检测检测到边框、膨胀腐蚀开闭运算效果颠倒

图像处理出错,轮廓检测检测到边框、膨胀腐蚀开闭运算效果颠倒

2022-06-09 21:29:23 308

原创 树莓派视觉小车 -- OpenCV巡线(HSL色彩空间、PID)

(一)、试错试错1:形态学处理一开始用的形态学处理,自行改变阈值,调试之后,进行处理,发现效果不是太好,于是改成了HSV色彩空间。试错2:HSV色彩空间之前没注意到,HSV色彩空间很难识别白色:HSV:不难看出,如果寻白色线的话,HSV色彩空间不是一个很好的选择,下面引入HSL色彩空间:HSL:所以,如果是巡白色的话,建议用HSL色彩空间。注意:巡线小车的摄像头不能太低,如果太低了,可能让小车自己的影子会阻碍光线。...

2022-01-28 17:38:45 20937 19

原创 奇葩错误 WIFI搜不到、无线网卡连接不上

之前一段时间在实验室接收培训,那里的WIFI搜不到,上课都是通过局域网关联的,就很难受。后来直接无线网卡连接不上了。。。。直接上解决方案:重装无线网卡驱动,即可解决。

2022-01-01 00:07:32 841 2

原创 FPGA(5)数码管静态显示与动态显示

目录一、数码管静态显示二、数码管动态显示1、变量定义2、定时(60us)3、动态显示代码一、数码管静态显示FPGA的数码管有4位,8段。(位和段都是共阳,即低电平有效)下面用4位(所有)数码管,显示数字“1”://数码管(共阳:低电平有效)//FPGA的数码管:段选和位选都共阳module my_and(dig, seg);output wire [3:0] dig; //位选(选定某一个数码管)output wire [...

2021-11-20 22:28:26 13264

原创 FPGA(4)晶振与计数器 -- 实现定时器(led定时闪烁、蜂鸣器频率控制(单响)、蜂鸣器报警(频带控制,多响))

0决定与,1决定或。一、验证与门只要有一个按键按下,结果即为低电平,灯亮。assign led1 = key1&key2; //与门(只要有一个按键按下,则结果为低电平,灯亮)//验证与门、与非门module my_and //my_and:文件名称( //1、配置输入输出变量input wire key1, //输入引脚key1input wire key2, //输入引脚key2output wire led1, //输出引脚led1...

2021-11-19 21:43:57 5654 1

原创 FPGA(3)验证数字逻辑(与门、与非门、二选一数据选择器、2-4译码器、半加器、全加器)

0决定与,1决定或。一、验证与门只要有一个按键按下,结果即为低电平,灯亮。assign led1 = key1&key2; //与门(只要有一个按键按下,则结果为低电平,灯亮)//验证与门、与非门module my_and //my_and:文件名称( //1、配置输入输出变量input wire key1, //输入引脚key1input wire key2, //输入引脚key2output wire led1, //输出引脚led1...

2021-11-18 11:56:46 9050 1

原创 FPGA(2)基础语法 -- 按键控制led(alway@语句)

目录1、module 文件名(端口)2、声明关键字3、always@语句代码1、module 文件名(端口)注:这里最好养成习惯,只在文件名后面的括号中声明引脚变量,输入输出、关键字类型等等都放到后面定义。//verilog基础语法(always)module my_and(key1, led1);//注:一旦在module后面的括号中指定了input/output,后面就不能再增加类型了,//所以最好不要在括号内定义input/output类型2、声明关键.

2021-11-17 12:03:17 1000

原创 FPGA(1)基础入门 -- 按键控制led灯

目录效果说明1、配置输入输出变量2、变量赋值3、配置引脚(输入输出变量)代码效果说明key1按键按下,led1被点亮。key2按键按下,led2被点亮。1、配置输入输出变量input wire key1, //输入引脚key1input wire key2, //输入引脚key2output wire led1, //输出引脚led1output wire led2 //输出引脚led22、变量赋值可以发现LED灯正常状态是低电平点亮.

2021-11-16 20:56:39 4015

原创 深度学习 -- TensorFlow(项目)验证码生成与识别(多任务学习)

目录基础理论一、生成验证码数据集1、生成验证码训练集1-0、判断文件夹是否为空1-1、创建字符集(数字、大小写英文字母)1-2、随机生成验证码(1000个,长度为4)2、生成验证码测试集代码二、获取数据(训练集、测试集)1、获取数据和标签1-1、获取训练集数据和标签(路径和标签)1-2、获取测试集数据和标签(路径和标签)1-3、数据组合(图像路径和标签)2、打乱数据3、处理每条数据4、自定义重复周期和批次大小5、处理每批数据6、获取一批

2021-11-02 22:28:18 6615 18

原创 深度学习 -- TensorFlow(9)循环神经网络RNN

目录一、循环神经网络RNN介绍二、Elman network && Jordan network三、RNN的多种架构1、一对一2、多对一3、多对多4、 一对多5、Seq2Seq四、传统RNN的缺点一、循环神经网络RNN介绍循环神经网络 RNN 的基本结构是 BP 网络的结构,也是有输入层,隐藏层和输出层。只不过在 RNN 中隐藏层的输出不仅可以传到输出层,并且还可以传给下一个时刻的隐藏层。从结构上可...

2021-10-26 21:02:12 2079

原创 Yolo(3)(项目)Yolo v3 目标检测(85分类)

图像被划分成3个图像:图像在多次卷积压缩后,小物体容易消失,所以我们分别用52*52、26*26、13*13的网格检测小物体、中物体、大物体。(猫是大物体,所以用13*13的网格检测)import cv2import numpy as np# 读取文件def ReadFile(): global name_list name_list = [] # 1、读取文件 with open('coco.names') as f...

2021-10-25 12:42:26 4156 1

原创 OpenCV 错误:无法打开摄像头(打开摄像头卡机)

一开始的情况:摄像头卡死了,无法打开没有设置读取帧的时间,必须要加入以下内容:# q键退出(设置读帧间隔时间) if cv2.waitKey(1) & 0XFF == ord("q"): break就可以成功打开摄像头了。注:cv2.waitKey(1) 与 0xFF(1111 1111)相与是因为cv2.waitKey(1) 的返回值不止8位,但是只有后8位实际有效,为避免产干扰,通过 ‘与’ 操...

2021-10-24 19:56:11 8963 1

原创 Yolo(2)Yolo v2

一、基础理论1、Yolo v2改进1、引入BP层2、更高精度的分类器3、引入anchoranchor:预设好的虚拟边框(virtual bounding box)生成框由anchor回归而来。(回归(regression):使预测值一步步趋向目标值)得到生成框的过程:(anchor一步步回归)anchor的设置:人为地定义一系列位置,在这些位置上生成不同形状的anchor,在这些不同形状的anchor中,找到最像物体的a...

2021-10-22 22:45:02 274

原创 Yolo(1)Yolo v1

根据像素的突变,进行图像分割,分出不同物体,画出不同颜色的区域,得到备选框(proposal)。我们需要寻找的物体也在备选框中,我们需要把它从备选框中找出来。

2021-10-20 15:15:28 1096 3

原创 深度学习--TensorFlow(项目)识别自己的手写数字(基于CNN卷积神经网络)

目录基础理论一、训练CNN卷积神经网络1、载入数据2、改变数据维度3、归一化4、独热编码5、搭建CNN卷积神经网络5-1、第一层:第一个卷积层5-2、第二层:第二个卷积层5-3、扁平化5-4、第三层:第一个全连接层5-5、第四层:第二个全连接层(输出层)6、编译7、训练8、保存模型代码二、识别自己的手写数字(图像)1、载入数据2、载入训练好的模型3、载入自己写的数字图片并设置大小4、转灰度图5、转黑底白字、数据归一化..

2021-10-15 12:23:56 24087 22

原创 深度学习--TensorFlow(8)CNN卷积神经网络理论(计算机视觉)

计算机视觉是人工智能领域最热门的研究领域之一,并且是近几年发展最快的人工智能领域之一。CV(Computer Vision)领域的快速发展主要得益于卷积神经网络的使用。计算机视觉介绍1、计算机视觉应用人脸识别图像检索(搜索引擎图片搜索)监控光学字符识别OCR(证件识别,车牌识别,文档识别,银行卡识别,名片识别,身份证识 别等)自动驾驶(检测交通标志、路上的行人和车辆等)2、计算机视觉技术图像分类...

2021-10-15 08:36:05 1846

原创 深度学习--TensorFlow(7)拟合(过拟合处理)(数据增强、提前停止训练、dropout、正则化、标签平滑)

拟合1、拟合情况拟合分为三种情况:欠拟合、正确拟合、过拟合。训练集中:训练集中,过拟合的效果最好。测试集中:不难看出,测试集中是正确拟合的效果最好。总结:过拟合虽然在训练集中的效果非常好,但是一旦到了测试集,效果就不如正确拟合好。模型复杂度在深度学习中主要指的是网络的层数以及每层网络神经元的各种,网络的层 数越多越复杂,神经元的个数越多越复杂。训练集的误差是随着模型复杂度的提升而不断降低的...

2021-10-13 19:54:50 5249 1

原创 深度学习--TensorFlow(项目)Keras手写数字识别

目录成果展示基础理论一、数据准备1、载入数据集2、数据处理2-1、归一化2-2、独热编码二、神经网络拟合1、搭建神经网络2、设置优化器、损失函数3、训练三、预测1、备份图像数据集2、预测分类3、显示结果(plt)总代码成果展示训练1次:训练30次:基础理论本次手写数字识别,采用的是MNIST数据集。http://yann.lecun.com/exdb/mnist/这里输出层用到了softma...

2021-10-11 21:31:55 2104 1

原创 深度学习--TensorFlow(6)神经网络 -- 拟合线性函数&&非线性函数

目录一、拟合线性函数1、生成随机坐标2、神经网络拟合代码二、拟合非线性函数1、生成二次随机点2、神经网络拟合代码一、拟合线性函数学习率0.03,训练1000次:学习率0.05,训练1000次:学习率0.1,训练1000次:可以发现,学习率为0.05时的训练效果是最好的。1、生成随机坐标1、生成x坐标2、生成随机干扰3、计算得到y坐标4、画点# 生成随机点def Produce_Random_D...

2021-10-09 23:10:25 5936 5

原创 深度学习--TensorFlow(5)BP神经网络(混淆矩阵、准确率、精确率、召回率、F值)

目录一、混淆矩阵二、准确率三、召回率四、精确率五、综合评估指标 -- F值一、混淆矩阵 也程误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。在机器学习领域,混淆矩阵又称为可能性表格或者是错误矩阵。它是一种特定的矩阵用来呈现算法的效果。后面准确率、召回率、精确率、F值的讲解,都以该例子进行计算:二、准确率准确率:识别成功的概率。公式:准确率比较好理解,难的是后面的召回率和精确率的理解。...

2021-10-09 18:08:21 5882

原创 深度学习--TensorFlow(4)BP神经网络(损失函数、梯度下降、常用激活函数、梯度消失&&梯度爆炸)

一、概念与定义BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。BP 算法的基本思想:学习过程由信号的正向传播和误差的反向传播两个过程组成。正向传播:把样本的特征从输入层进行输入,信号经过各个隐藏层逐层处理后,最后从输出层传出。反向传播:对于网络的实际输出与期望输出之间的误差,把误差信号从最后一层逐层反传,从而获得各个层的误差学习信号,再根据误差学习信号来修正各个层神经元的权值。周而复始地进行,权值不断调整的过程,就是神经网学习训练的过程。...

2021-10-09 16:51:17 9374 1

原创 深度学习--TensorFlow(3)线性神经网络(线性输入&&非线性输入)(实现)

目录一、线性神经网络(线性输入)1、基础理论2、代码奇葩错误:二、线性神经网络(非线性输入)0、引言1、基础理论三、线性神经网络(非线性输入)实战1、设置初始参数2、正向传播,求线性输出y3、反向传播,更新权重w4、训练&&预测(画图)4-1、画正负样本点坐标4-2、获取非线性输出模型(y)代码一、线性神经网络(线性输入)1、基础理论线性神经网络和上面的单层感知器十分相似,只是把单层感知器的sign...

2021-10-08 12:32:03 1420

原创 深度学习--TensorFlow (2)单层感知器2 -- 实现多数据分类

目录一、基础理论前向传递(得到输出y)反向传递(更新权重w)二、实现多数据分类1、设置初始参数2、训练3、画图3-1、画点3-2、画线段总代码一、基础理论这里只写公式,更加详细的可以看前篇CSDN前向传递(得到输出y)(b是偏置)反向传递(更新权重w)更新权重:二、实现多数据分类1、设置初始参数# 1、设置初始参数# 输入 #每一行对应一个标...

2021-10-07 16:54:14 813

原创 深度学习--TensorFlow (1)单层感知器1 -- 实现单数据训练

目录基础理论1、单词感知器介绍2、单词感知器学习规则前向传递(得到输出y)反向传递(更新权重w)手写单层感知器1、初始参数设置2、正向传播(得到输出y)3、 反向传播(更新权重参数)总代码基础理论1、单词感知器介绍感知器:模拟生物神经网络的人工神经网络结构。w:权值,可以调节神经信号输入值的大小。b:偏置,相当于神经元内部自带的信号。f(x):激活函数,信号进行线性/非线性变化。(有sign、sigmoid、relu等等激...

2021-10-07 12:13:16 1216

原创 python -- plt图表

目录一、读取图像二、BGR转RGB三、plt画板显示图像总代码一、读取图像import cv2# 读取图像img1 = cv2.imread("Resource/test11.jpg")img2 = cv2.imread("Resource/test11.jpg", 0)二、BGR转RGB# BGR转RGB(opencv的色彩空间是BGR,plt色彩空间是RGB)b, g, r = cv2.split(img1)img1 = cv2.merge([r.

2021-10-06 11:15:22 1286

原创 TensorFlow(9)(项目)人马图像分类(卷积神经网络)

由于是二分类,所以最后会用到sigmoid激活函数。一、准备数据# 1、准备数据from tensorflow.keras.preprocessing.image import ImageDataGenerator1、创建两个数据生成器# 1-1、创建两个数据生成器train_data_gen = ImageDataGenerator(rescale=1/255)test_data_gen = ImageDataGenerator(rescale=1/255)...

2021-10-06 10:24:59 1674

yolo.zip(yolov3资源)

yolo的一系列资源(yolov3.cfg、yolov3.weights、yolov3-tiny.cfg、yolov3-tiny.weights、coco.names)

2021-10-25

titanic.csv(泰坦尼克号旅客分析)

做数据处理、机器学习的可以下载下来分析存活率与哪些因素有关。

2021-09-10

train.rar(train.csv,facebook签到信息)

facebook签到信息:train.csv(比较大,1.18G)

2021-09-10

Template.rar

OpenCV车牌识别 字符模板库

2021-09-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除